是使得代价函数最小码 随机梯度下降_线性回归详解:最小二乘法、梯度下降和极大似然估计...

本文详细介绍了线性回归的基本概念,包括因变量、自变量和一元、多元线性回归。重点讨论了三种常用的优化方法:最小二乘法、梯度下降法和极大似然估计。最小二乘法通过最小化误差平方和找到最佳拟合线;梯度下降法是一种迭代优化技术,用于求解最小二乘法中的最小值;极大似然估计则是从概率角度出发寻找最优参数。文章还探讨了这些方法的适用场景和潜在局限性,如梯度下降可能陷入局部最小值的问题。
摘要由CSDN通过智能技术生成

线性回归

• 回归分析(regression analysis)用来建立方程模拟两

个或者多个变量之间如何关联

• 被预测的变量叫做:因变量(dependent variable),

输出(output)

• 被用来进行预测的变量叫做: 自变量(independent

variable), 输入(input)

• 一元线性回归包含一个自变量和一个因变量

• 以上两个变量的关系用一条直线来模拟

• 如果包含两个以上的自变量,则称作多元回归分析

(multiple regression)

ℎ = 0 + 1
方程对应的图像是一条直线,称作回归线。其中,
1为回归线的斜率, 0为回归线的截距。

ce0cda1dffa09dd388d5c1953b7ab36f.png

求解方程
并不是我们随便作出一条回归线就行,我们需要作出一条使得真实值y都要紧密的在回归线边上,下面介绍几种方法看看怎么作出这个回归线。

1、最小二乘法

最小二乘法的思想非常简单, 通过最小化误差的平方和寻找数据的最佳函数匹配,即求所有观察值的残差平方和的最小值。当然OLS回归是要在一定条件下的:

  • Y的平均值能够准确地被由X组成的线性函数建模出来。
  • 解释变量之间不存在线性关系(或强相关)。
  • 解释变量和随机扰动项不存在线性关系。
  • 假设随机扰动项是一个均值为0的正态分布。
  • 假设随机扰动项的方差恒为
  • 假设随机扰动项是独立的。

剩下的问题我们是要求代价函数的最小值,这也是最小二乘的意思

f142d401b94d699bc97ad88b0f73a913.png

目标 :求代价函数的最小值

66119bffd913ff341d33e3f15b701b01.png

511f40a42235a6870b6746da1f53a9a9.png

由图可知代价函数是关于θ0和θ1的二次方程,我们知道极值在导数为0的点

以下是我手动推导笔记(村里刚通网,不会电脑输公式)

0446c737c8eec0f2abd56dfab4c76969.png

当然如果是多元线性回归思路也一样,就是计算复杂一点:

​ℎ =θ0​+θ1​x1+...+θp​x​p

对每个θ求导

1f110cf75eb8b12d88c5f4b7693db1c3.png

2、梯度下降法

我们注意到最小二乘法最后一步要求p个方程组,是非常大的计算量,其实计算起来很难,因此我们就有了一种新的计算方法,就是梯度下降法,梯度下降法可以看作是 更简单的一种 求最小二乘法最后一步解方程 的方法.

a4017c14c25554f3227a1572600806eb.png

此图是梯度下降法工作原理。由图我们就像随机在一个坑洼地带,现在我们要通过不断尝试不同方向走路(改变θ0和θ1)以达到走到此地最低处(J(θ0,θ1)最小值)的目标。

那么现在问题来了,模仿让子弹飞里的台词:A:”第一步怎么走?第二步走到哪?“ B:”走到哪是第三步,我们先把第二步走好,第二步:步子迈多大?“(自娱自乐)。

梯度下降,不就是迭代θ0和θ1嘛,那么第一步来了:怎么走?是分别迭代θ0和θ1还是同时迭代θ0和θ1。答案是同时迭代θ0和θ1,有人会疑惑为什么不能一个个迭代?同时迭代能找到正确的梯度下降的方向,只迭代一个可能一开始方向就偏离了。其实这就好比咱们学习文理不能偏科一样,咱们高考也是偏科可能大学都考不上了。

8cb15bde0b37c09a6a230534bdf48df1.png

我们经过努力迈出了人生正确的第一步,现在到第二步了:步子迈多大,这里的步子就是学习速率α。鲁迅说的好:步子迈大了容易扯*。那么我们的α多大就变得至关重要了,那么怎么选α的值呢,我能笃定的说我也不知道吗(手动捂脸)。大师们告诉我步子不能太大也不能太小。(我靠!这不是什么也没说,还无形中装了会逼),其实说白了就是凭着经验多尝试不同的值。这是吴大师的心决:

学习率不能太小,也不能太大,可以多尝试一些值

0.1,0.03,0.01,0.003,0.001,0.0003,0.0001…

现在第一步和第二步都走完了,到第三步就简单了,努力的方向和心决都有了那么剩下的就是一个字了”练!“。我们不断的重复一二步骤进行迭代,直至找到J(θ0,θ1)的最小值。

梯度下降的缺点是求得的值可能是局部最小值,并不是最小值。这不梯度下降法还蕴含着人生哲理"不要满足手中的98K,要的就是捡空投里的AWM"。

3、极大似然估计

极大似然估计个人理解: 当一件事情发生了,我们推算出它发生最有利的概率。比如抛硬币10次结果:6正,4反。那我们会想正面朝上的概率是多少,那还用想吗?!不就是6/10,那是小学解概率问题思路,现在我们用极大似然估计的思路来解。

令正面朝上的概率为p,那么反面朝上的概率就为1-p,那么出现6正4反的联合概率就是p6*(1-p)4。

L(x1,x2......x10;p)=p6*(1-p)4

为了方便计算,把其转为对数似然函数,加个对数并不影响函数的方向。

ln(L(x1,x2......x10;p))=ln(p6*(1-p)4)

ln(L(x1,x2......x10;p))=6lnp+4ln(1-p)

用极大似然的思路,我们需要p值使得抛十次硬币6次朝上的概率最高。则我们对函数求导

ln'(L(x1,x2......x10;p))=(6lnp+4ln(1-p))'=6/P+4/(P-1)=0

最后求得p=6/10

这就是极大似然估计的思路,当事件出现一个结果,我们找出出现这一结果的最高的概率。

好,现在我们怎么用这思路来求线型回归呢?

最小二乘的时候我们假设误差ε是均值为0的正态分布。我们用这一特性来搞点事情。

转变成高斯分布概率函数:

49ef3c7af39ae15c5d34871012294a8f.png

e0034a653ff225cded70002d8037c4db.png

根据极大似然函数的思路,问题变成了我们知道x(i),y(i)我们要找到θ的值使得高斯分布函数值最大。

60ce0a85ef975d3a616ace313ec999f1.png

dd625a469d1373a72c29c057684a748d.png

接下来求L(θ)的最大值,因为mlog1/(√2)*σ是常数,现在变为求J(θ)的最小值,问题又到了最小二乘问题上了。

8eabb81f77842d50dd63283036c8512a.png

总结:对于线性回归而言最小二乘法是一本武林秘籍,极大似然估计是上半部心法,梯度下降是下半部心法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值