利用点到直线的距离最小二乘法_模型之母:简单线性回归&最小二乘法

本文转载自公众号木东居士,文章为数据茶水间群友原创,经授权木东居士公众号发表。 关于作者: Japson。 某人工智能公司AI平台研发工程师,专注于AI工程化及场景落地。 持续学习中,期望与大家多多交流技术以及职业规划。

0x00前言

I‘m Linear Regression, One of the most important mathematical models and Mother of Models.
线性回归模型看起来非常简单,简单到让人怀疑其是否有研究价值以及使用价值。但实际上,线性回归模型可以说是最重要的数学模型之一,很多模型都是建立在它的基础之上,可以被称为是“模型之母”。 那么本篇文章,将会学习到简单线性回归,从中总结出一类机器学习算法的基本思路并引出损失函数的概念。为了求出最小的损失函数,将会学习到大名鼎鼎的最小二乘法。

0x01简单线性回归

1.1 什么是简单线性回归

之前我们介绍的kNN算法属于分类(Classification),即label为离散的类别型(categorical variable),如:颜色类别、手机品牌、是否患病等。 而简单线性回归是属于回归(regression),即label为连续数值型(continuous numerical variable),如:房价、股票价格、降雨量等。 那么什么是简单线性回归? 所谓简单,是指只有一个样本特征,即只有一个自变量;所谓线性,是指方程是线性的;所谓回归,是指用方程来模拟变量之间是如何关联的。 简单线性回归,其思想简单,实现容易(与其背后强大的数学性质相关。同时也是许多强大的非线性模型(多项式回归、逻辑回归、SVM)的基础。并且其结果具有很好的可解释性。

1.2 求解思路

下面我们可以用一个简单的例子来直观理解线性回归模型。 小A开了一家玩具厂,他想分析一下玩具产量与成本之间的关系,于是小A制作了如下表格:
玩具个数成本
107.7
109.87
1110.87
1212.18
1311.43
1413.36
1515.15
1616.73
1717.4

为了更加直观地了解数据,小A对数据进行了可视化:

f07b6f85c13394155b94ffaac536be28.png
从图像中我们可以发现,产量和成本之间,存在着一定的线性关系,似乎是在沿着某条直线上下随机波动。
a554112b3685a6629331080fbb3551fe.png
4a2ed38d27a9d50786338c630bd3db1c
也就是说,我们需要一条直线,最大程度的拟合样本特征和样本数据标记之间的关系。 在二维平面中,这条直线的方程就是 y = ax + b 假设我们找到了最佳拟合的直线方程: y = ax + b 则对于每个样本点  ,根据我们的直线方程,预测值为: 很显然,我们希望直线方程能够尽可能地拟合真实情况,也就是说真值   和预测值   的差距尽量小。 只有所有的样本的误差都小,才能证明我们找出的直线方程拟合性好。 通常来说,为了防止正误差值和负误差值相抵的情况,使用绝对值来表示距离: ,但是在线性回归中,我们需要找极值,需要函数可导,而   不是一个处处可导的函数,因此很自然地想到可以使用: 考虑所有样本,我们推导出: 因此我们目标是: 已知训练数据样本x、y ,找到a和b的值,使   尽可能小,从而得出最佳的拟合方程。
a38d1e16e68149dc3d689c7f75fb8bd6.png
b5fdbf785997e6b43dd963736442975b

1.3 一种基本推导思路

在上一小节中,找到一组参数,使得真实值与预测值之间的差距尽可能地小,是一种典型的机器学习算法的推导思路 **我们所谓的建模过程,其实就是找到一个模型,最大程度的拟合我们的数据。**在简单线回归问题中,模型就是我们的直线方程:y = ax + b 。 要想最大的拟合数据,本质上就是找到没有拟合的部分,也就是损失的部分尽量小,就是损失函数(loss function)(也有算法是衡量拟合的程度,称函数为效用函数(utility function)): 因此,推导思路为:
  1. 通过分析问题,确定问题的损失函数或者效用函数;
  2. 然后通过最优化损失函数或者效用函数,获得机器学习的模型
近乎所有参数学习算法都是这样的套路,区别是模型不同,建立的目标函数不同,优化的方式也不同。 回到简单线性回归问题,目标:

已知训练数据样本、 ,找到和的值,使  尽可能小

这是一个典型的最小二乘法问题(最小化误差的平方) 通过最小二乘法可以求出a、b的表达式:

0x02 最小二乘法

2.1 由损失函数引出一堆“风险”

2.1.1 损失函数

在机器学习中,所有的算法模型其实都依赖于最小化或最大化某一个函数,我们称之为“目标函数”

最小化的这组函数被称为“损失函数”。什么是损失函数呢?

损失函数描述了单个样本预测值和真实值之间误差的程度。用来度量模型一次预测的好坏。

损失函数是衡量预测模型预测期望结果表现的指标。损失函数越小,模型的鲁棒性越好。 常用损失函数有:
  • 0-1损失函数:用来表述分类问题,当预测分类错误时,损失函数值为1,正确为0
  • 平方损失函数:用来描述回归问题,用来表示连续性变量,为预测值与真实值差值的平方。(误差值越大、惩罚力度越强,也就是对差值敏感)
  • 绝对损失函数:用在回归模型,用距离的绝对值来衡量
  • 对数损失函数:是预测值Y和条件概率之间的衡量。事实上,该损失函数用到了极大似然估计的思想。P(Y|X)通俗的解释就是:在当前模型的基础上,对于样本X,其预测值为Y,也就是预测正确的概率。由于概率之间的同时满足需要使用乘法,为了将其转化为加法,我们将其取对数。最后由于是损失函数,所以预测正确的概率越高,其损失值应该是越小,因此再加个负号取个反。
以上损失函数是针对于单个样本的,但是一个训练数据集中存在N个样本,N个样本给出N个损失,如何进行选择呢? 这就引出了风险函数。
2.1.2 期望风险
期望风险损失函数的期望,用来表达理论上模型f(X)关于联合分布P(X,Y)的平均意义下的损失。 又叫期望损失/风险函数。
403f90f4af170641a9edb62214674028.png
2b1aec01d04a4e2ff3d2f2db7bef3b56
2.1.3 经验风险
模型f(X)关于训练数据集的平均损失,称为经验风险或经验损失。 其公式含义为:模型关于训练集的平均损失(每个样本的损失加起来,然后平均一下)
96c6c14694c6e272765d85cfba8a6264.png
3d6ab76d780a23042d1bf145b8e7744f
经验风险最小的模型为最优模型。 在训练集上最小经验风险最小,也就意味着预测值和真实值尽可能接近,模型的效果越好。 公式含义为取训练样本集中对数损失函数平均值的最小。
34d7aff9433340104b377cdf2a83cfd1.png
f8905ef66a7d825079f1375250b5c37e
2.1.4 经验风险最小化和结构风险最小化
期望风险是模型关于联合分布的期望损失,经验风险是模型关于训练样本数据集的平均损失。 根据大数定律,当样本容量N趋于无穷时,经验风险趋于期望风险。 因此很自然地想到用经验风险去估计期望风险。 但是由于训练样本个数有限,可能会出现过度拟合的问题,即决策函数对于训练集几乎全部拟合,但是对于测试集拟合效果过差。 因此需要对其进行矫正:
  • 结构风险最小化:当样本容量不大的时候,经验风险最小化容易产生“过拟合”的问题,为了“减缓”过拟合问题,提出了结构风险最小理论。结构风险最小化为经验风险与复杂度同时较小。
9741581f58c7fbe909abd8dfe8449582.png
3c0c72d9d5e9e71f56431d4d1b4d1ae9
通过公式可以看出,结构风险:在经验风险上加上一个正则化项(regularizer),或者叫做罚项(penalty) 。正则化项是J(f)是函数的复杂度再乘一个权重系数(用以权衡经验风险和复杂度)
2.1.5 小结
1、损失函数:单个样本预测值和真实值之间误差的程度。 2、期望风险:是损失函数的期望,理论上模型f(X)关于联合分布P(X,Y)的平均意义下的损失。 3、经验风险:模型关于训练集的平均损失(每个样本的损失加起来,然后平均一下)。 4、结构风险:在经验风险上加上一个正则化项,防止过拟合的策略。

2.2 最小二乘法

2.2.1 什么是最小二乘法

言归正传,进入最小二乘法的部分。 大名鼎鼎的最小二乘法,虽然听上去挺高大上,但是思想还是挺朴素的,符合大家的直觉。 最小二乘法源于法国数学家阿德里安的猜想:

对于测量值来说,让总的误差的平方最小的就是真实值。这是基于,如果误差是随机的,应该围绕真值上下波动。

即:

45f319872fc2c6e54157fb26b30027d0.png

那么为了求助这个二次函数的最小值,对其进行求导,导数为0的时候取得最小值:

c1db4af9f52da731fb09b84def499c54.png

进而:

fbdd5c214e084bea5bd4f001d041a099.png

正好是算数平均数(算数平均数是最小二乘法的特例)。

这就是最小二乘法,所谓“二乘”就是平方的意思。 (高斯证明过:如果误差的分布是正态分布,那么最小二乘法得到的就是最有可能的值。)
2.2.2 线性回归中的应用
我们在第一章中提到:

目标是,找到a和b,使得损失函数:尽可能的小。

这里,将简单线性问题转为最优化问题。下面对函数的各个位置分量求导,导数为0的地方就是极值: 对   进行求导: 然后mb提到等号前面,两边同时除以m,等号右面的每一项相当于均值。 现在  对   进行求导: 此时将对   进行求导得到的结果  代入上式中,得到:  将上式进行整理,得到:
e89c8a4378536cd944ad874a1fb5ef30.png
9d4160c6f80a288fc7db7f5a35265211
将上式继续进行整理:
d9272e0a5d1ed1f2ad71e1e847497c59.png

这样在实现的时候简单很多。

最终我们通过最小二乘法得到a、b的表达式:

0xFF 总结

本章中,我们从数学的角度了解了简单线性回归,从中总结出一类机器学习算法的基本思路:
  1. 通过分析问题,确定问题的损失函数或者效用函数;
  2. 然后通过最优化损失函数或者效用函数,获得机器学习的模型。
理解了损失函数的概念,并列举出了常见损失函数,并引出了一堆“风险”。最后为了求出最小的损失函数,学习了最小二乘法,并进行了完整的数学推导。 下一篇,我们将会实现简单线性回归,并添加到我们自己的工程文件里。

封面图来源:Photo by Paul Frenzel on Unsplash

4abf004bf4e71181635cc49f9e0aa32d.png
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值