bootstrap算法_决策树算法之随机森林

随机森林通过Bootstrap抽样和特征随机选择来构建多棵决策树,降低过拟合风险。每棵树独立生成,最终预测结果由所有树的预测结果聚合决定。该算法在决策树基础上引入随机性,提高模型泛化能力。
摘要由CSDN通过智能技术生成
dc47fbd0a69dc18d24a18300033116b2.png

在 CART 分类回归树的基础之上,我们可以很容易的掌握随机森林算法,它们之间的区别在于,CART 决策树较容易过拟合,而随机森林可以在一定程度上解决该问题。

随机森林的主要思想是:使用随机性产生出一系列简单的决策树,并组合它们的预测结果为最终的结果,可谓三个臭皮匠赛过一个诸葛亮,下面我们就来具体了解一下。

产生随机森林的具体步骤

产生随机森林的步骤大致为三步

  1. 准备样本
  2. 产生决策树
  3. 循环第 1 、2 步,直到产生足够的决策树,一般为上百个

在第 1 步,它是一个可放回抽样,即所产生的样本是允许重复的,这种抽样又被称为 Bootstrap,例如我们有以下 dummy 数据

afcf573c655a0cc44b1ee208c9624864.png

在做完 Bootstrap 之后,可能的样本数据如下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值