《MATLAB 第3次 案例及实验1:冷却模型[教学知识]》由会员分享,可在线阅读,更多相关《MATLAB 第3次 案例及实验1:冷却模型[教学知识](14页珍藏版)》请在人人文库网上搜索。
1、案例:冷却模型某天中午12:00时,在一个住宅内发现一具受害者尸体。法医于12:35赶到现场,立即测得死者体温是30.8,一个小时以后再次测得体温为29.0,法医还注意到当时室温是28.0,请你建立一个数学模型来推断出受害者的死亡时间。 1. 问题分析这是一个带有许多不定因素问题。首先人体的外形差异大,室温条件是否变化不知道,热在人体内部的分布不知道,热的传播有幅射、传导、对流三种不同的方式,等等。我们建立的模型有可能是偏微分方程。为简化问题,可以认为人体每一点的温度都一样,只考虑传导过程,室温在冷却过程中保持不变,热交换只在物体与空气的接触面进行,而且在接触面两侧的温度差就是物体与空气的温度。
2、差。2. 基本假设(1)假设房间足够大,放入温度较低或较高的物体时,室内温度基本不受影响。(2)物体各点的温度总是保持一致。(3)只考虑热传导过程。(4)设人体的正常体温为37.5。(5)以死亡时刻为记时初始时刻,时间以分钟为单位。3. 变量说明名称变量符号单位时间t分室内温度m物体的温度T(t)4. 建立模型我们已知,在物理学中有牛顿冷却(加热)定律:将温度为T的物体放入处于常温 m 的介质中时,T的变化速率正比于T与周围介质的温度差。所以建立微分方程,其中参数k0,室温m=18。并且有:在t0时刻,温度T=30.8; 在t0+60时刻,温度T=29。而t0就是从死亡时刻到12:35所经过的。
3、时间。求解程序:syms T t t0 k m ;yy = dsolve(DT = -k*(T-m),T(0)=37.5, t);yy=subs(yy,m,28);yy0=subs(yy,t,t0);yy60=subs(yy,t,t0+60);yy0=char(yy0);yy0=strcat(yy0,-30.8=0);yy60=char(yy60);yy60=strcat(yy60,-29=0);kk,tt0=solve(yy0,yy60,k,t0);kk=double(kk);tt0=double(tt0);ht=12-fix(tt0./60);mt=fix(35-mod(tt0,60);exp1=strcat(该受害者的死亡时间为:,num2str(ht), 时,num2str(mt),分);disp(exp1)结论:该受害者的死亡时间为:11时23分5. 练习与思考a、某天中午8:00时,在另一个住宅内发现一具受害者尸体。法医于8:30赶到现场,立即测得死者体温是35.8,一个小时以后再次测得体温为34.6,法医还注意到当时室温是26.0,请你建立一个数学模型来推断出受害者的死亡时间。b、前面我们做了一些假设使问题简化,如果改变某些假设比如说室温不是恒定不变的,要求大家选择一个比较合适的室温变化关系式,我们的模型会怎么样变化。14教学-材料。