方程的根与伽罗瓦群

一: 序言

算算术和解方程其难度是不一样的.

有一种计算,是不对称的, 比如你想好了一个数3, 让我猜, 我肯定不知道了,会问,给个提示吧?
你心里算了一下: 3*5+3*3*3+8 = 32
你说 这个数乘以5,再加上这个数的3次方再加上8等于32,  你猜这个数是多少?

我于是会列出这个式子:
5x + x^3 + 8 = 32

用一个数做乘法,加法是很容易的.(即验证一个数是否是根是很容易的).
但从这个等式中找到解则是很不容易的.

这在数学上叫解方程.
含有未知数的等式叫方程. 使等式成立的数叫方程的根
求方程根的过程叫解方程.

解方程就是要通过因式分解,配方,替换,等式基本性质等方法得到解的过程.

二: 方程根的性质.
对于一般n此方程, 其系数为整数, 其根按照代数基本定理为n个.
这n个根(x1,x2,....xn),就构成一个群.
这n个根不是随便的n 个数, 而是它们的相互关系要满足韦达定理. 就是说它们相互加乘以后会等于方程的系数.

但反过来不一定成立, 就是说方程的系数一顿加乘之后不一定能得到方程的根.
为什么?
因为方程的系数域是最小的域有理数域, 系数加乘以后还是有理数域. 而根域是复数域,比系数域大很多.
例如x^2=2, 其根是无理数, 就不在有理数域. 若想此方程有解,需要把√2扩进来. 扩域后为Q(√2)
这个扩域为正规扩域,扩张系数为2.
同理,要想一般一元2次方程有解,需要扩域√2,√3,... √n,  每一次都是正规扩域. 同时还要把i扩进来,i^2=-1
伽罗华给出了证明,如此扩域后,一元二次方程都有根式解.
伽罗华还给出证明,不停的扩域后,包括开3次方, 开四次方这些数都扩进来, 一元三次方程和一元四次方程都有根式解.
怎么证明的? 我现在也不懂. 慢慢再看.
而到了一元五次方程, 无论你怎么扩开n次方的域, 都填不满根域了,因为你扩的域开n次方的域只是代数数域, 而此时
的根域却已经是整个复数域了.
从代数数域到实数域是一个不规则扩张, 实数域是一个连续的数域而代数数域是不连续的.代数数域是一个可数的无穷大.
至于为什么到了5次方,根域开始弥漫到超越数,这要看伽罗华怎么说了.

三: 伽罗华群.群与数域的对应
方程的根构成群, 二次方程构成S2群, 三次方程构成S3群,4次方程构成S4群, 5次S5群,....n次Sn群.
这里不重复群的定义,群是一个小团体,并且元素可以相互运算. 根的乘法运算定义为根的置换. 其特性是
在不同的根置换下, 韦达定理定义的加乘等式依然成立. 有这种性质的小团体才配称为方程的根. 这种不同的置换一共有n!个.

我们找到一个伽罗华函数:
V=k1x1+k2x2+k3x3...+knxn
精心选择这些系数k, 使得n!次根置换会得到n!个V. 叫做v1,v2,.... vn!
构造一个n!次方的表达式:
p(y)=(y-v1)(y-v2)...(y-vn!),  这个多项式,可能是可分解的也可能不可分解或部分不可分解.
是否可分解完全看数域, 在复数域内是完全可以分解的.(只不过超越数你不能精确表达)
考察一个不可约部分 (y-v1)(y-v2) 或 (y^2-(v1+v2)+v1y2)
那个不动置换和将V1,V2进行交换的根的置换构成一个群(这是可以证明的), v1,v2不动置换和v,v2交换置换都不会变更这个不可约的函数值.
一般的,p(y)中不可约部分其根构成一个群,叫伽罗华群, 记为G(y), G(y)=0 叫伽罗华可分解.
对于一元n次方程,有可能G(y)很大, p(y)完全不可约, 这就叫在此数域下无解.
我们一般不用费力去构造p(y),根据根也能判定伽罗华群. 例如x^2=2, 在有理数域无根, 此时群为(1),(12), 实数域有根,此时群为(1)

命题:
如果方程式在一个数域中的群是一个元数为质数的循环正置换群,则此方程式必可根式解.

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值