本文大部分内容来自我八年级秋季课程第14讲(讲义获取方式见文末),所以目标群体是八年级娃。当然,初三娃理应也能有所得。事实上,初三可进一步抬高视角,这是后话。
对b的理解
对k的理解

无锡八上期末试卷中的一次函数填选压轴题,以含参问题居多,这类问题,对一次函数解析式及图像的理解提出了更高的要求。而且,无锡中考也极喜欢考察含参二次函数,这正好是我本周要给九年级娃培训的课题。
事实上,一次函数y=kx+b(k≠0)中,比较有意思的就是k、b这两个参数,正是这两个参数在影响着函数解析式和图像。


在直线y=kx+b(k≠0)中,令x=0,则y=b,故直线过点(0,b),换言之,b即直线与y轴交点的纵坐标。当b>0时,直线与y轴交于正半轴;当b=0时,直线过原点;当b<0时,直线与y轴交于负半轴。


一、k的正负
也就是说,k的正负决定了直线的倾斜方向,即向上倾斜还是向下倾斜(均指从左往右看),教科书中对于k的论述,基本止步于此。
二、|k|的大小
于是,我们发现:|k|的大小决定了直线的倾斜程度,|k|越大,直线越陡峭,越靠近y轴.
三、从数与形的双重角度,揭开k的神秘面纱
(一)从数的角度:
k即直线上任意两点纵坐标差与横坐标差的比值,可正可负。
(二)从形的角度: