函数或曲线恒过定点

前言

函数或曲线恒过定点问题,在高中数学中很常见,也很容易被忽视,如果函数或曲线恒过定点这个隐含条件使用的好,能大大方便我们的解题。

低阶储备

在分析函数恒过定点的问题时,即可以从形的角度[做函数图像+图像变换]来思考,当然更可以从数的角度[直接计算]来思考;一般来说,一个数的问题,往往有与之相应的形的问题和其对应;自然,一个形的问题,往往有与之相应的数的问题和其对应。以下主要从数的角度来计算说明;

①一次函数 y = k x + 1 y=kx+1 y=kx+1恒过定点 ( 0 , 1 ) (0,1) (01),由于 x = 0 x=0 x=0时,不论 k k k为何值,都有 y = 1 y=1 y=1,故其恒过定点 ( 0 , 1 ) (0,1) (01)

同理,一次函数 y = k ( x − 1 ) + 3 y=k(x-1)+3 y=k(x1)+3恒过定点 ( 1 , 3 ) (1,3) (13), 由于 x − 1 = 0 x-1=0 x1=0时,即 x = 1 x=1 x=1时,不论 k k k为何值,都有 y = 3 y=3 y=3,故其恒过定点 ( 1 , 3 ) (1,3) (13)

正因为这样,当直线经过点 ( 0 , 1 ) (0,1) (0,1)时,我们常常设其解析式为 y = k x + 1 y=kx+1 y=kx+1,当直线经过点 ( 1 , 0 ) (1,0) (1,0)时,我们常常设其解析式为 x = k y + 1 x=ky+1 x=ky+1

[补充]函数 y = ( m − 1 ) x + m y=(m-1)x+m y=(m1)x+m恒过定点 ( − 1 , 1 ) (-1,1) (1,1)问题:在具体题目中如何观察确定直线所恒过的定点,采用尝试法,即分别用 x = 0 x=0 x=0 x = ± 1 x=\pm 1 x=±1 x = ± 2 x=\pm 2 x=±2 ⋯ \cdots \quad

②指数函数 y = a x ( a > 0 , a ≠ 1 ) y=a^x(a>0,a\neq 1) y=ax(a>0a=1)恒过定点 ( 0 , 1 ) (0,1) (0,1),理由:当 x = 0 x=0 x=0时,不论 a a a为何值,都有 y = a 0 = 1 y=a^0=1 y=a0=1,故其恒过定点 ( 0 , 1 ) (0,1) (0,1)

同理,指数型函数 y = a x − 2 ( a > 0 , a ≠ 1 ) y=a^{x-2}(a>0,a\neq 1) y=ax2(a>0a=1)恒过定点 ( 2 , 1 ) (2,1) (2,1),理由:当 x − 2 = 0 x-2=0 x2=0时,即 x = 2 x=2 x=2时,不论 a a a为何值,都有 y = a 0 = 1 y=a^0=1 y=a0=1,故其恒过定点 ( 2 , 1 ) (2,1) (2,1)

指数型函数 y = 2 x − a + 2 y=2^{x-a}+2 y=2xa+2恒过定点 ( a , 3 ) (a,3) (a3),理由:当 x − a = 0 x-a=0 xa=0时,即 x = a x=a x=a时,都有 y = 2 0 + 2 = 3 y=2^0+2=3 y=20+2=3,故其恒过定点 ( a , 3 ) (a,3) (a,3)

但是注意:指数型函数 y = a ⋅ e x ( a > 0 ) y=a\cdot e^x(a>0) y=aex(a>0)并不恒过定点 ( 0 , 1 ) (0,1) (01),而是恒过动点 ( 0 , a ) (0,a) (0a)

指数型函数 y = e x + e − x y=e^{x}+e^{-x} y=ex+ex恒过定点 ( 0 , 2 ) (0,2) (02),则指数型函数 y = e x − 2 + e 2 − x y=e^{x-2}+e^{2-x} y=ex2+e2x恒过定点 ( 2 , 2 ) (2,2) (22)

指数型函数 y = e x − e − x y=e^{x}-e^{-x} y=exex恒过定点 ( 0 , 0 ) (0,0) (00),则指数型函数 y = e x + 1 − e − 1 − x y=e^{x+1}-e^{-1-x} y=ex+1e1x恒过定点 ( − 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海之恋2068

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值