函数或曲线恒过定点

前言

函数或曲线恒过定点问题,在高中数学中很常见,也很容易被忽视,如果函数或曲线恒过定点这个隐含条件使用的好,能大大方便我们的解题。

低阶储备

在分析函数恒过定点的问题时,即可以从形的角度[做函数图像+图像变换]来思考,当然更可以从数的角度[直接计算]来思考;一般来说,一个数的问题,往往有与之相应的形的问题和其对应;自然,一个形的问题,往往有与之相应的数的问题和其对应。以下主要从数的角度来计算说明;

①一次函数 y = k x + 1 y=kx+1 y=kx+1恒过定点 ( 0 , 1 ) (0,1) (01),由于 x = 0 x=0 x=0时,不论 k k k为何值,都有 y = 1 y=1 y=1,故其恒过定点 ( 0 , 1 ) (0,1) (01)

同理,一次函数 y = k ( x − 1 ) + 3 y=k(x-1)+3 y=k(x1)+3恒过定点 ( 1 , 3 ) (1,3) (13), 由于 x − 1 = 0 x-1=0 x1=0时,即 x = 1 x=1 x=1时,不论 k k k为何值,都有 y = 3 y=3 y=3,故其恒过定点 ( 1 , 3 ) (1,3) (13)

正因为这样,当直线经过点 ( 0 , 1 ) (0,1) (0,1)时,我们常常设其解析式为 y = k x + 1 y=kx+1 y=kx+1,当直线经过点 ( 1 , 0 ) (1,0) (1,0)时,我们常常设其解析式为 x = k y + 1 x=ky+1 x=ky+1

[补充]函数 y = ( m − 1 ) x + m y=(m-1)x+m y=(m1)x+m恒过定点 ( − 1 , 1 ) (-1,1) (1,1)问题:在具体题目中如何观察确定直线所恒过的定点,采用尝试法,即分别用 x = 0 x=0 x=0 x = ± 1 x=\pm 1 x=±1 x = ± 2 x=\pm 2 x=±2 ⋯ \cdots \quad

②指数函数 y = a x ( a > 0 , a ≠ 1 ) y=a^x(a>0,a\neq 1) y=ax(a>0a=1)恒过定点 ( 0 , 1 ) (0,1) (0,1),理由:当 x = 0 x=0 x=0时,不论 a a a为何值,都有 y = a 0 = 1 y=a^0=1 y=a0=1,故其恒过定点 ( 0 , 1 ) (0,1) (0,1)

同理,指数型函数 y = a x − 2 ( a > 0 , a ≠ 1 ) y=a^{x-2}(a>0,a\neq 1) y=ax2(a>0a=1)恒过定点 ( 2 , 1 ) (2,1) (2,1),理由:当 x − 2 = 0 x-2=0 x2=0时,即 x = 2 x=2 x=2时,不论 a a a为何值,都有 y = a 0 = 1 y=a^0=1 y=a0=1,故其恒过定点 ( 2 , 1 ) (2,1) (2,1)

指数型函数 y = 2 x − a + 2 y=2^{x-a}+2 y=2xa+2恒过定点 ( a , 3 ) (a,3) (a3),理由:当 x − a = 0 x-a=0 xa=0时,即 x = a x=a x=a时,都有 y = 2 0 + 2 = 3 y=2^0+2=3 y=20+2=3,故其恒过定点 ( a , 3 ) (a,3) (a,3)

但是注意:指数型函数 y = a ⋅ e x ( a > 0 ) y=a\cdot e^x(a>0) y=aex(a>0)并不恒过定点 ( 0 , 1 ) (0,1) (01),而是恒过动点 ( 0 , a ) (0,a) (0a)

指数型函数 y = e x + e − x y=e^{x}+e^{-x} y=ex+ex恒过定点 ( 0 , 2 ) (0,2) (02),则指数型函数 y = e x − 2 + e 2 − x y=e^{x-2}+e^{2-x} y=ex2+e2x恒过定点 ( 2 , 2 ) (2,2) (22)

指数型函数 y = e x − e − x y=e^{x}-e^{-x} y=exex恒过定点 ( 0 , 0 ) (0,0) (00),则指数型函数 y = e x + 1 − e − 1 − x y=e^{x+1}-e^{-1-x} y=ex+1e1x恒过定点 ( − 1 , 0 ) (-1,0) (10)

③对数函数 y = l o g a x ( a > 0 , a ≠ 1 ) y=log_ax(a>0,a\neq 1) y=logax(a>0a=1)恒过定点 ( 1 , 0 ) (1,0) (10),理由:当 x = 1 x=1 x=1时,都有 y = l o g a 1 = 0 y=log_a1=0 y=loga1=0,故其恒过定点 ( 1 , 0 ) (1,0) (1,0)

同理,对数型函数 y = l o g 2 ( x − b ) y=log_2{(x-b)} y=log2(xb)恒过定点 ( b + 1 , 0 ) (b+1,0) (b+10),理由:当 x − b = 1 x-b=1 xb=1时,即 x = b + 1 x=b+1 x=b+1时,都有 y = l o g 2 1 = 0 y=log_21=0 y=log21=0,故其恒过定点 ( b + 1 , 0 ) (b+1,0) (b+1,0)

④绝对值型函数 y = a ⋅ ∣ x ∣ ( a ≠ 0 ) y=a\cdot |x|(a\neq 0) y=ax(a=0)恒过定点 ( 0 , 0 ) (0,0) (00) y = a ⋅ ∣ x − 2 ∣ ( a ≠ 0 ) y=a\cdot |x-2|(a\neq 0) y=ax2∣(a=0)恒过定点 ( 2 , 0 ) (2,0) (20) y = a ⋅ ∣ x − 2 ∣ + 1 ( a ≠ 0 ) y=a\cdot |x-2|+1(a\neq 0) y=ax2∣+1(a=0)恒过定点 ( 2 , 1 ) (2,1) (21);其中 a a a的作用会改变张角的方向和大小;

⑤二次函数 y = a ⋅ x 2 ( a ≠ 0 ) y=a\cdot x^2(a\neq 0) y=ax2(a=0)恒过定点 ( 0 , 0 ) (0,0) (00);二次函数 y = a ⋅ x 2 + 1 ( a ≠ 0 ) y=a\cdot x^2+1(a\neq 0) y=ax2+1(a=0)恒过定点 ( 1 , 0 ) (1,0) (10);其中 a a a的作用会改变抛物线的开口方向和张角大小。

⑥若抽象函数 y = f ( x − 1 ) + 3 y=f(x-1)+3 y=f(x1)+3过定点 ( 2 , 4 ) (2,4) (24),则抽象函数 y = f ( x ) y=f(x) y=f(x)过定点 ( 1 , 1 ) (1,1) (11);理由:由 f ( 2 − 1 ) + 3 = 4 f(2-1)+3=4 f(21)+3=4,即可得到 f ( 1 ) = 1 f(1)=1 f(1)=1,故 y = f ( x ) y=f(x) y=f(x)过定点 ( 1 , 1 ) (1,1) (11)

同理,若函数 y = f ( x ) y=f(x) y=f(x)过定点 ( 2 , 4 ) (2,4) (24),则函数 y = f ( x − 1 ) + 3 y=f(x-1)+3 y=f(x1)+3过定点 ( 3 , 7 ) (3,7) (37);理由:由 f ( 2 ) = 4 f(2)=4 f(2)=4,则可知 f ( 3 − 1 ) + 3 = 7 f(3-1)+3=7 f(31)+3=7,即函数 y = f ( x − 1 ) + 3 y=f(x-1)+3 y=f(x1)+3过定点 ( 3 , 7 ) (3,7) (37)

⑦ 二次函数 y = a ( x − 1 ) ( x − b ) y=a(x-1)(x-b) y=a(x1)(xb),恒过定点 ( 1 , 0 ) (1,0) (1,0)

中阶储备

①共点直线系方程;比如求解直线 a x + y − 3 a y − 1 = 0 ax+y-3ay-1=0 ax+y3ay1=0所过的定点坐标;

分析:将其整理为共点直线系方程形式: a ( x − 3 y ) + y − 1 = 0 a(x-3y)+y-1=0 a(x3y)+y1=0

则直线 a x + y − 3 a y − 1 = 0 ax+y-3ay-1=0 ax+y3ay1=0一定经过直线 x − 3 y = 0 x-3y=0 x3y=0和直线 y − 1 = 0 y-1=0 y1=0的交点;

{ x − 3 y = 0 y − 1 = 0 \left\{\begin{array}{l}x-3y=0\\y-1=0\end{array}\right. {x3y=0y1=0,解得 { x = 3 y = 1 \left\{\begin{array}{l}x=3\\y=1\end{array}\right. {x=3y=1,

则直线 a x + y − 3 a y − 1 = 0 ax+y-3ay-1=0 ax+y3ay1=0所过的定点坐标为 ( 3 , 1 ) (3,1) (3,1).

②过定点和动点的抛物线族;

比如,函数 f ( x ) = ( 2 x − 2 ) ( x − a ) f(x)=(2x-2)(x-a) f(x)=(2x2)(xa),则抛物线一定经过定点 ( 1 , 0 ) (1,0) (1,0)和动点 ( a , 0 ) (a,0) (a,0)

③已知曲线 F 1 ( x , y ) = 0 F_1(x,y)=0 F1(xy)=0 F 2 ( x , y ) = 0 F_2(x,y)=0 F2(xy)=0相交于点 ( x 0 , y 0 ) (x_0,y_0) (x0y0),则曲线 F 1 ( x , y ) + λ ⋅ F 2 ( x , y ) = 0 F_1(x,y)+\lambda\cdot F_2(x,y)=0 F1(xy)+λF2(xy)=0必经过点 ( x 0 , y 0 ) (x_0,y_0) (x0y0)

证明:由于曲线 F 1 ( x , y ) = 0 F_1(x,y)=0 F1(xy)=0 F 2 ( x , y ) = 0 F_2(x,y)=0 F2(xy)=0相交于点 ( x 0 , y 0 ) (x_0,y_0) (x0y0),则其必然满足 F 1 ( x 0 , y 0 ) = 0 F_1(x_0,y_0)=0 F1(x0y0)=0 F 2 ( x 0 , y 0 ) = 0 F_2(x_0,y_0)=0 F2(x0y0)=0

F 1 ( x 0 , y 0 ) + λ ⋅ F 2 ( x 0 , y 0 ) = 0 + λ × 0 = 0 F_1(x_0,y_0)+\lambda\cdot F_2(x_0,y_0)=0+\lambda\times 0=0 F1(x0y0)+λF2(x0y0)=0+λ×0=0,故曲线 F 1 ( x , y ) + λ ⋅ F 2 ( x , y ) = 0 F_1(x,y)+\lambda\cdot F_2(x,y)=0 F1(xy)+λF2(xy)=0必经过点 ( x 0 , y 0 ) (x_0,y_0) (x0y0)

④若曲线 F 1 ( x , y ) + λ ⋅ F 2 ( x , y ) = 0 F_1(x,y)+\lambda\cdot F_2(x,y)=0 F1(xy)+λF2(xy)=0必经过点 ( x 0 , y 0 ) (x_0,y_0) (x0y0),则定点坐标由方程组 { F 1 ( x , y ) = 0 F 2 ( x , y ) = 0 \begin{cases}F_1(x,y)=0\\F_2(x,y)=0\end{cases} {F1(xy)=0F2(xy)=0求解得到。

⑤圆锥曲线的焦点弦?待思考。

⑥证明直线经过某个定点(2,1),则直线的方程一定可以转化为形如 y − 1 = m ( x − 2 ) y-1=m(x-2) y1=m(x2)的形式, m m m一般为题目中给定的参变量。

高阶储备

函数与导数题型中的函数恒过定点问题,更值得学有余力的同学关注,因为题目中的函数往往是我们自己主动变形后构造的,等吃力的构造好函数,我们一般也就没有精力注意恒过定点问题了。其实此时涉及到的函数往往是上述的简单函数的代数和,而且大多情形下,参与代数和的几个函数都是零点相同的,比如函数 g ( x ) = l n x + 1 − x g(x)=lnx+1-x g(x)=lnx+1x,我们可以认为其由函数 y 1 = l n x y_1=lnx y1=lnx和函数 y 2 = 1 − x y_2=1-x y2=1x相加得到,两个子函数的零点都是 x = 1 x=1 x=1,故我们应该很容易看出来 g ( 1 ) = 0 g(1)=0 g(1)=0

  • 再比如函数 g ( x ) = l n ( x − 1 ) + 2 − x g(x)=ln(x-1)+2-x g(x)=ln(x1)+2x,我们应该看出来 g ( 2 ) = 0 g(2)=0 g(2)=0
  • 再比如已知 λ ( x − 1 ) − 2 l n x ≥ 0 \lambda(x-1)-2lnx \ge 0 λ(x1)2lnx0对任意 x ∈ ( 0 , 1 ] x\in(0,1] x(01]恒成立,若令 h ( x ) = λ ( x − 1 ) − 2 l n x h(x)=\lambda(x-1)-2lnx h(x)=λ(x1)2lnx,你就应该看出来 h ( 1 ) = 0 h(1)=0 h(1)=0
  • 再比如函数 h ( t ) = 2 e t − 1 2 − 1 t h(t)=2e^{t-\frac{1}{2}}-\cfrac{1}{t} h(t)=2et21t1,则 h ( 1 2 ) = 0 h(\cfrac{1}{2})=0 h(21)=0
  • 再比如函数 f ( x ) = e x − 1 − l n x − 1 f(x)=e^{x-1}-lnx-1 f(x)=ex1lnx1,则有 f ( 1 ) = 0 f(1)=0 f(1)=0
  • 再比如函数 f ( x ) = 2 x + 1 + e x + 1 f(x)=2x+1+e^{x+1} f(x)=2x+1+ex+1,则有 f ( − 1 ) = 0 f(-1)=0 f(1)=0
  • 再比如函数 g ( x ) = 16 x 3 + log ⁡ 2 ( 1 2 x ) g(x)=16x^3+\log_2{(\cfrac{1}{2}x)} g(x)=16x3+log2(21x),则有 g ( 1 2 ) = 0 g(\cfrac{1}{2})=0 g(21)=0

典例剖析

曲线 x 2 + λ y 2 = 1 ( λ ≠ 0 ) x^2+\lambda y^2=1(\lambda\neq 0) x2+λy2=1(λ=0)恒过定点_________。 ( ± 1 , 0 ) (\pm 1,0) (±10)

法1:从数的角度思考分析,类比 y = k x + 1 y=kx+1 y=kx+1恒过定点 ( 0 , 1 ) (0,1) (01)的方法思路,令 y = 0 y=0 y=0,得到 x 2 = 1 x^2=1 x2=1,故上述曲线恒过定点 ( ± 1 , 0 ) (\pm 1,0) (±10);

法2:从形的角度思考分析,变形得到 x 2 1 + y 2 1 λ = 1 \cfrac{x^2}{1}+\cfrac{y^2}{\frac{1}{\lambda}}=1 1x2+λ1y2=1,用动态的观点思考,当 λ \lambda λ变化时,椭圆或者双曲线与 x x x轴的交点坐标 ( − 1 , 0 ) (-1,0) (10) ( 1 , 0 ) (1,0) (10)始终不变,故曲线恒过定点 ( ± 1 , 0 ) (\pm 1,0) (±10);

【2019石家庄模拟】若函数 y = f ( x ) y=f(x) y=f(x)的图像恒过点 ( 1 , 1 ) (1,1) (1,1),则函数 y = f ( 4 − x ) y=f(4-x) y=f(4x)的图像一定经过点_______。

法1:从形入手分析,将函数 y y y = = = f ( x ) f(x) f(x)的图像关于 y y y轴对称得到函数 y y y = = = f ( − x ) f(-x) f(x),故 y y y = = = f ( − x ) f(-x) f(x)一定经过点 ( − 1 , 1 ) (-1,1) (1,1),再将函数 y y y = = = f ( − x ) f(-x) f(x)的图像向右平移 4 4 4个单位,得到函数 y y y = = = f ( 4 − x ) f(4-x) f(4x)的图像,故函数 y y y = = = f ( 4 − x ) f(4-x) f(4x)的图像一定经过点 ( 3 , 1 ) (3,1) (3,1).

法2:从数入手分析,由题目可知, f ( 1 ) f(1) f(1) = = = 1 1 1,故对函数 y y y = = = f ( 4 − x ) f(4-x) f(4x)而言,令 x x x = = = 3 3 3,则有 f ( 4 − 3 ) f(4-3) f(43) = = = f ( 1 ) f(1) f(1) = = = 1 1 1,故函数 y y y = = = f ( 4 − x ) f(4-x) f(4x)的图像一定经过点 ( 3 , 1 ) (3,1) (3,1).

【2022届高三数学模拟】已知幂函数 g ( x ) = ( 2 a − 1 ) x a + 1 g(x)=(2a-1)x^{a+1} g(x)=(2a1)xa+1 的图象过函数 f ( x ) = m x − b − 1 2 f(x)=m^{x-b}-\cfrac{1}{2} f(x)=mxb21( m > 0 m>0 m>0, 且 m ≠ 1 ) m\neq 1) m=1) 的图象所经过的定点, 则 b b b 的值等于 \qquad

$A.\pm\cfrac{1}{2}$ $B.\pm\cfrac{\sqrt{2}}{2}$ $C.2$ $D.\pm2$

解析: 由 g ( x ) = ( 2 a − 1 ) x a + 1 g(x)=(2a-1)x^{a+1} g(x)=(2a1)xa+1 为幂函数, 得 2 a − 1 = 1 2a-1=1 2a1=1, 解得 a = 1 a=1 a=1, 所以 g ( x ) = x 2 g(x)=x^{2} g(x)=x2

又函数 f ( x ) = m x − b − 1 2 f(x)=m^{x-b}-\cfrac{1}{2} f(x)=mxb21 ( m > 0 m>0 m>0, 且 m ≠ 1 ) m \neq 1) m=1), 当 x = b x=b x=b 时, f ( b ) = m b − b − 1 2 = 1 2 f(b)=m^{b-b}-\cfrac{1}{2}=\cfrac{1}{2} f(b)=mbb21=21

f ( x ) f(x) f(x) 的图象所经过的定点为 ( b , 1 2 ) (b,\cfrac{1}{2}) (b,21), 所以 g ( b ) = 1 2 g(b)=\cfrac{1}{2} g(b)=21, 即 b 2 = 1 2 b^{2}=\cfrac{1}{2} b2=21, 解得 b = ± 2 2 b=\pm\cfrac{\sqrt{2}}{2} b=±22 , 故选 B B B .

相关链接

  • 27
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海之恋2068

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值