函数最值问题的常用解法_一次函数中的最值问题的基本题型!

c3aabee8e049c343dee1a929be18a6b2.png

例一:直线L与x轴交与点A,与y轴交于B,已知直线L的解析式为y-x+4。D为OB中点,p是线段AB上一动点,求使OP+PD值最小的点P的坐标。

07813b14d4bec51f29fd46dd94bd6db0.png

例二:已知点A(1,5),B(3,-1),点M在x轴上,当AM-BM最大时,求M的坐标。

6cd7ef0fe758066d19e0f627e12ed95d.png

例三:在平面直角坐标系中,点P的坐标为(m,-m+4),则点P到原点的最短距离是________.

2733d77c52df09258040176a5d26a981.png

例四:已知实数a,b满足2a+b=2,则在平面直角坐标系中,求动点p(a,b)到坐标原点O距离的最小值。

454c7aa666e66ba4e13512c87633333c.png
60502fd0754d8cbc56b9c0d851420408.png

例五:无论a取什么实数,动点P(2a,-4a+4)总在直线L上运动,点A的坐标为(-3,0),求线段AP的最小值。

95bb20e7d1b45ace02336743158a20e3.png
01d76e29c87553680fe7b41e9c1c91d4.png

例六:在平面直角坐标系中,已知O为坐标原点,点A(3,0),B(0,4),以点A为旋转中心,把△ABO顺时针旋转到△ACD,C恰好落在x轴正半轴上。已知边OB上的一点P旋转后的对应点为P′,当DP+AP′取得最小值是,求P的坐标。

dad25c06f931a64e4a1902614426ee5d.png

综上,我们解决一次函数最值问题常用解法包括:“将军饮马”,数形结合法,配方法求最值,三角形的三边关系等方法。

声明:来源于网络,如有侵权请联系删除!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值