图像的几何不变矩
矩特征主要表征了图像区域的几何特征,又称为几何矩, 由于其具有旋转、平移、尺度等特性的不变特征,所以又称其为不变矩.在图像处理中,几何不变矩可以作为一个重要的特征来表示物体,可以据此特征来对图像进行分类等操作. 1.HU矩 几何矩是由Hu(Visual pattern recognition by moment invariants)在1962年提出的,图像f(x,y)的(p+q)阶几何矩定义为 Mpq =∫∫(x^p)*(y^q)f(x,y)dxdy(p,q = 0,1,……∞)矩在统计学中被用来反映随机变量的分布情况,推广到力学中,它被用作刻画空间物体的质量分布.同样的道理,如果我们将图像的灰度值看作是一个二维或三维的密度分布函数,那么矩方法即可用于图像分析领域并用作图像特征的提取.最常用的,物体的零阶矩表示了图像的“质量”:Moo= ∫∫f(x,y )dxdy 一阶矩(M01,M10)用于确定图像质心( Xc,Yc):Xc = M10/M00;Yc = M01/M00;若将坐标原点移至 Xc和 Yc处,就得到了对于图像位移不变的中心矩.如Upq =∫∫[(x-Xc)^p]*[(y-Yc)^q]f(x,y)dxdy.Hu在文中提出了7个几何矩的不变量,这些不变量满足于图像平移、伸缩和旋转不变.如果定义Zpq=Upq/(U20 + U02)^(p+q+2),Hu 的7种矩为:H1=Z20+Z02;H1=(Z20+Z02)^2+4Z11^2;. 2.Zernike矩 在模式识别中,一个重要的问题是对目标的方向性变化也能进行识别.Zernike 矩是一组正交矩,具有旋转不变性的特性,即旋转目标并不改变其模值.由于Zernike 矩可以构造任意高阶矩,所以Zernike 矩的识别效果优于其他方法.
Zernike 提出了一组多项式{ V nm ( x , y) } .这组多项式在单位圆{ x2 + y2 ≤1} 内是正交的,具有如下形式: V nm ( x , y) = V nm (ρ,θ) = Rnm (ρ) exp ( jmθ) ,并且满足 ∫∫ x^2+y^2 <= 1 [( V nm ( x , y) 的共轭]* V pq ( x , y) d x d y. = [pi/(n+1)]*δnpδmq .
if(a==b) δab = 1 else δab = 0,n 表示正整数或是0;m是正整数或是负整数它表示满足m的绝对值<=n 而且n-m的绝对值是偶数这两个条件;ρ 表示原点到象素(x,y)的向量的距离;θ 表示向量ρ 跟x 轴之间的夹角(逆时针方向). 对于一幅数字图象,积分用求和代替,即A nm =∑x∑y f(x,y) *[( V nm (ρ,θ) 的共轭],x^2+y^2 <=1,实际计算一幅给定图象的Zernike 矩时,必须将图象的重心移到坐标圆点,将图象象素点映射到单位圆内.由以上可知,使[ V nm (ρ,θ) 的共轭]可提取图象的特征,低频特性由n 值小的[( V nm (ρ,θ) 的共轭]来提取,高频特性由n 值大的来提取.Zernike 矩可以任意构造高价矩, 而高阶矩包含更多的图象信息, 所以Zernike 矩识别效果更好.,Zernike 矩仅仅具有相位的移动.它的模值保持不变.所以可以将| A nm | 作为目标的旋转不变性特征.因为| A nm | =| A n , - m | ,所以只需计算m ≥0 的情况.
作业帮用户
2017-09-23
举报