lstm多变量输入回归预测模型_教你搭建多变量时间序列预测模型LSTM(附代码、数据集)...

本文详细介绍了如何利用Keras库构建一个多变量LSTM模型,以解决时间序列预测问题,特别是针对空气质量预测。文章涵盖数据预处理、模型构建和评估,展示了如何将日期时间信息整合、处理缺失值,以及如何定义和训练LSTM模型以减少预测误差。
摘要由CSDN通过智能技术生成

来源:机器之心

本文长度为2527字,建议阅读5分钟

本文为你介绍如何在Keras深度学习库中搭建用于多变量时间序列预测的LSTM模型。

长短期记忆循环神经网络等几乎可以完美地模拟多个输入变量的问题,这为时间序列预测带来极大益处。本文介绍了如何在 Keras 深度学习库中搭建用于多变量时间序列预测的 LSTM 模型。

诸如长短期记忆(LSTM)循环神经网络的神经神经网络几乎可以无缝建模具备多个输入变量的问题。

这为时间序列预测带来极大益处,因为经典线性方法难以适应多变量或多输入预测问题。

通过本教程,你将学会如何在 Keras 深度学习库中搭建用于多变量时间序列预测的 LSTM 模型。

完成本教程后,你将学会:

如何将原始数据集转换成适用于时间序列预测的数据集

如何处理数据并使其适应用于多变量时间序列预测问题的 LSTM 模型。

如何做出预测并将结果重新调整到初始单元。

我们开始吧!

教程概述

本教程分为三大部分,分别是:

空气污染预测

准备基本数据

搭建多变量 LSTM 预测模型

Python 环境

本教程假设你配置了 Python SciPy 环境,Python 2/3 皆可。

你还需要使用 TensorFlow 或 Theano 后端安装 Keras(2.0 或更高版本)。

本教程还假定你已经安装了 scikit-learn、Pandas、NumPy 和 Matplotlib。

空气污染预测

本教程将使用空气质量数据集。这是美国驻北京大使馆记录了五年的数据集,其按小时报告天气和污染水平。

此数据包括日期、PM2.5 浓度,以及天气信息,包括露点、温度、气压、风向、风速和降水时长。原始数据中的完整特征列表如下:

1. NO:行号

2. year:年份

3. month:月份

4. day:日

5. hour:时

6. pm2.5:PM2.5 浓度

7. DEWP:露点

8. TEMP:温度

9. PRES:气压

10. cbwd:组合风向

11. Iws:累计风速

12. s:累积降雪时间

13. Ir:累积降雨时间

我们可以使用这些数据并构建一个预测问题,我

LSTM(长短期记忆)是一种递归神经网络(RNN),可以用于处理序列数据,例如时间序列预测。在Keras中,可以使用LSTM层来构建多变量时间序列预测模型。 首先,需要将多个变量转换为单个输入向量。这可以通过将各个变量沿着时间轴堆叠在一起来实现。例如,如果有三个变量 $x_1, x_2, x_3$,每个变量都有 $n$ 个时间步长,则可以将它们组合成一个形状为 $(n, 3)$ 的单个输入张量。 然后,可以使用LSTM层来构建模型。例如,以下代码显示了如何构建具有一个LSTM层的模型: ```python from keras.models import Sequential from keras.layers import LSTM, Dense model = Sequential() model.add(LSTM(50, input_shape=(n_steps, n_features))) model.add(Dense(1)) model.compile(optimizer='adam', loss='mse') ``` 在这里,`n_steps` 是时间序列的步长,`n_features` 是每个时间步长的变量数。在本例中,我们使用一个LSTM层,其中有50个神经元,并且输入形状为 `(n_steps, n_features)`。随后是一个具有一个神经元的密集层,并使用均方误差作为损失函数进行编译。 最后,可以使用训练数据来拟合模型,并使用测试数据进行预测。 ```python model.fit(X_train, y_train, epochs=100, batch_size=32) y_pred = model.predict(X_test) ``` 在这里,`X_train` 和 `y_train` 是训练数据,`X_test` 是测试数据。在训练期间,使用100个时期和一个批次大小为32来拟合模型。随后,可以使用 `predict` 方法来预测测试数据的输出。 以上是LSTM变量输入回归预测模型的基本步骤。具体的实现可能因数据类型和模型结构而异。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值