一条小鲤余
码龄4年
关注
提问 私信
  • 博客:7,598
    7,598
    总访问量
  • 9
    原创
  • 195,346
    排名
  • 89
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:四川省
  • 加入CSDN时间: 2020-10-29
博客简介:

yukita的博客

查看详细资料
  • 原力等级
    当前等级
    1
    当前总分
    74
    当月
    2
个人成就
  • 获得105次点赞
  • 内容获得2次评论
  • 获得78次收藏
  • 代码片获得377次分享
创作历程
  • 8篇
    2024年
  • 1篇
    2022年
成就勋章
TA的专栏
  • 优化算法
    1篇
兴趣领域 设置
  • Python
    pythondjangoscikit-learn
创作活动更多

2024 博客之星年度评选报名已开启

博主的专属年度盛宴,一年仅有一次!MAC mini、大疆无人机、华为手表等精美奖品等你来拿!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

利用Pyro库进行贝叶斯分析

由Uber开发的Python库,用于深度概率建模。Pyro提供了灵活的API,并且与PyTorch紧密集成,后者是另一个流行的深度学习库。Pyro支持多种推理算法,包括变分推理和马尔可夫链蒙特卡洛(MCMC)。
原创
发布博客 2024.06.19 ·
316 阅读 ·
4 点赞 ·
0 评论 ·
2 收藏

基于贝叶斯逻辑回归的心脏病预测

贝叶斯逻辑回归是一种利用贝叶斯定理进行逻辑回归分析的方法,它允许我们结合先验知识和数据来推断模型参数的概率分布。在传统的逻辑回归中,我们寻找的是能够最大化对数似然函数的参数值,而在贝叶斯逻辑回归中,我们则对参数的概率分布进行推断。:首先为逻辑回归的参数(权重)指定一个先验分布。通常,我们会假设权重服从一个高斯分布(正态分布),即每个权重 𝑤𝑖都来自于一个均值为 𝜇 ,方差为的正态分布。:在指定了先验分布之后,我们需要计算似然函数,即给定参数和数据,观测到当前数据的概率。
原创
发布博客 2024.06.19 ·
1730 阅读 ·
23 点赞 ·
0 评论 ·
24 收藏

基于决策树的蘑菇分类模型

决策树的工作原理是通过一系列规则对数据进行分割,这些规则是基于特征的条件来制定的。从根节点开始,根据特征的某个值来选择一个分支,然后继续这个过程,直到达到叶节点,得到最终的分类结果。在构建决策树时,通常会使用一些准则来选择最优的特征和分割点,例如信息增益、基尼不纯度或最小化平方误差等。决策树的主要优点是易于理解和解释,可以处理不同类型的特征(数值型和类别型),且不需要进行特征缩放或归一化。它是一种树形结构,其中每个内部节点代表一个特征,每个分支代表一个特征值,每个叶节点代表一个类别标签。
原创
发布博客 2024.06.08 ·
298 阅读 ·
6 点赞 ·
0 评论 ·
2 收藏

一维卷积神经网络(1D-CNN)进行回归任务

import numpy as npimport pandas as pdfrom sklearn.model_selection import train_test_splitfrom sklearn.preprocessing import StandardScalerfrom tensorflow.keras.models import Sequentialfrom tensorflow.keras.layers import Conv1D, MaxPooling1D, Flatten,
原创
发布博客 2024.06.08 ·
895 阅读 ·
4 点赞 ·
1 评论 ·
6 收藏

基于贝叶斯估计的横波速度预测(回归模型)

定义贝叶斯线性回归模型# 系数alpha的先验分布# 系数beta的先验分布# 模型误差的先验分布# 预测值的计算# 似然函数# 进行MCMC采样# 查看采样结果的摘要。
原创
发布博客 2024.06.07 ·
173 阅读 ·
3 点赞 ·
0 评论 ·
1 收藏

使用PyMc进行贝叶斯ANOVA

为模型参数(如组间和组内方差)选择适当的先验分布。
原创
发布博客 2024.06.06 ·
299 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

利用LSTM进行回归预测

LSTM设计用来解决标准RNN在处理长序列数据时遇到的长期依赖问题,即随着时间的推移,RNN会逐渐丧失对早期信息的记忆能力。: 输出门决定隐藏状态的输出,它基于当前的输入和上一个隐藏状态。LSTM在序列预测、文本生成、语音识别、时间序列分析等领域表现出色,并且由于其优秀的长序列处理能力,它在深度学习领域得到了广泛的应用。: 输入门由两个部分组成:一个sigmoid层决定哪些值将被更新,一个tanh层创建一个新的候选值向量,这些值将被加入到状态中。
原创
发布博客 2024.06.06 ·
535 阅读 ·
4 点赞 ·
0 评论 ·
9 收藏

使用pymc进行贝叶斯估计

利用pymc进行贝叶斯估计
原创
发布博客 2024.06.06 ·
440 阅读 ·
8 点赞 ·
0 评论 ·
0 收藏

利用Python对共轭梯度算法的实现

本文利用最优算法求解方程极小值
原创
发布博客 2022.12.06 ·
1599 阅读 ·
8 点赞 ·
1 评论 ·
21 收藏