In the following we're talking about a simple random walk,
$X_i=\pm 1$ with equal probability, and we are calculating running
averages,
\[
\frac{S_n}{n}=\frac{1}{n}\sum_{i=1}^{n}X_i, n=1,2,\ldots
\]
The SLLN (convergence almost surely) says that we can be 100% sure
that this curve stretching off to the right will eventually, at
some finite time, fall entirely within the bands forever afterward
(to the right).
The R code used to generate this graph is below (plot labels
omitted for brevity).
n
s
plot(s/seq.int(n), type = "l", ylim = c(-0.4, 0.4))
abline(h = c(-e,e), lty = 2)
The WLLN (convergence in probability) says that a large proportion
of the sample paths will be in the bands on the right-hand side, at
time n
n
(for the above it looks like around 48 or 9 out
of 50). We can never be sure that any particular curve will be
inside at any finite time, but looking at the mass of noodles above
it'd be a pretty safe bet. The WLLN also says that we can make the
proportion of noodles inside as close to 1 as we like by making the
plot sufficiently wide.
The R code for the graph follows (again, skipping labels).
x
m)
y
matplot(y, type = "l", ylim = c(-0.4,0.4))
abline(h = c(-e,e), lty = 2, lwd = 2)