神经网络实验的心得_积分梯度:一种新颖的神经网络可视化方法

本文介绍了积分梯度(Integrated Gradients)——一种神经网络可视化方法,源自2016-2017年的研究。这种方法帮助理解模型预测背后的原理,尤其在中文情感分类任务中表现出色,能有效定位关键词语。作者提供了个人实现的实验效果,并鼓励读者通过PaperWeekly分享自己的研究成果。
摘要由CSDN通过智能技术生成

6093436fb8962ea8842016b0313afa24.gif

©PaperWeekly 原创 · 作者|苏剑林

单位|追一科技

研究方向|NLP、神经网络

本文介绍一种神经网络的可视化方法:积分梯度(Integrated Gradients),它首先在论文 Gradients of Counterfactuals [1] 中提出,后来 Axiomatic Attribution for Deep Networks [2] 再次介绍了它,两篇论文作者都是一样的,内容也大体上相同,后一篇相对来说更易懂一些,如果要读原论文的话,建议大家优先读后一篇。

当然,它已经是 2016-2017 年间的工作了,“新颖”说的是它思路上的创新有趣,而不是指最近发表。

所谓可视化,简单来说就是对于给定的输入 x 以及模型 F(x),我们想办法指出 x 的哪些分量对模型的决策有重要影响,或者说对 x 各个分量的重要性做个排序,用专业的话术来说那就是“归因”。一个朴素的思路是直接使用梯度 来作为 x 各个分量的重要性指标,而积分梯度是对它的改进。 然而,笔者认为,很多介绍积分梯度方法的文章(包括原论文),都过于“生硬”(形式化),没有很好地突出积分梯度能比朴素梯度更有效的本质原因。本文试图用自己的思路介绍一下积分梯度方法。

6f4167c722e77a311e8c43b31474c475.png

朴素梯度 首先,我们来学习一下基于梯度的方法,其实它就是基于泰勒展开:

c90d6b70e5649656e9c87f18647c62fe.png

我们知道 是大小跟 x 一样的向量,这里 为它的第 i 个分量,那么对于同样大小的 , 的绝对值越大,那么 相对于 的变化就越大,也就是说: 衡量了模型对输入的第 i 个分量的敏感程度,所以我们用 作为第 i 个分量的重要性指标。 这种思路比较简单直接,在论文 How to Explain Individual Classification Decisions  [3] 和 Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps  [4] 都有描述,在很多时候它确实也可以成功解释一些预测结果,但它也有明显的缺点。 很多文章提到了饱和区的情况,也就是一旦进入到了饱和区(典型的就是 的负半轴),梯度就为 0 了,那就揭示不出什么有效信息了。 从实践角度看,这种理解是合理的,但是笔者认为还不够深刻。从之前的文章对抗训练浅谈:意
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值