上一篇:Tensorflow笔记三 -- 搭建神经网络
一、损失函数
神经网络的复杂度: 可用神经网络的层数和神经网络中待优化参数个数表示
神经网络的层数: 一般不计入输入层,层数 = n 个隐藏层 + 1 个输出层
神经网络待优化的参数: 神经网络中所有参数 w 的个数 + 所有参数 b 的个数
例如:
在该神经网络中,包含 1 个输入层、1 个隐藏层和 1 个输出层,该神经网络的层数为 2 层。
在该神经网络中,参数的个数是所有参数 w 的个数加上所有参数 b 的总数,第一层参数用三行四列的二阶张量表示(即 12 个线上的权重 w)再加上 4 个偏置 b;第二层参数是四行两列的二阶张量(即 8 个线上的权重 w)再加上 2 个偏置 b。总参数 = 3*4+4 + 4*2+2 = 26。
损失函数(loss): 用来表示预测值(y)与已知答案(y_)的差距。在训练神经网络时,通过不断改变神经网络中所有参数,使损失函数不断减小,从而训练出更高准确率的神经网络模型。
常用的损失函数有均方误差、自定义和交叉熵等。
例如:
预测酸奶日销量 y,x1 和 x2 是影响日销量的两个因素。
应提前采集的数据有:一段时间内,每日的 x1 因素、x2 因素和销量 y_。采集的数据尽量多。
在本例中用销量预测产量,最优的产量应该等于销量。由于目前没有数据集,所以拟造了一套数据集。利用 Tensorflow 中函数随机生成 x1、 x2,制造标准答案 y_ = x1 + x2,为了更真实,求和后还加了正负 0.05 的随机噪声。
我们把这套自制的数据集喂入神经网络,构建一个一层的神经网络,拟合预测酸奶日销量的函数。
代码如下:
运行结果:
由上述代码可知,本例中神经网络预测模型为 y = w1x1 + w2x2,损失函数采用均方误差。通过使损失函数值(loss)不断降低,神经网络模型得到最终参数 w1=0.98,w2=1.02,销量预测结果为 y = 0.98x1 + 1.02x2。由于在生成数据集时,标准答案为 y = x1 + x2,因此,销量预测结果和标准答案已非常接近,说明该神经网络预测酸奶日销量正确。
自定义损失函数: 根据问题的实际情况,定制合理地损失函数
例如:
①若酸奶成本为 1 元,酸奶销售利润为 9 元,则制造成本小于酸奶利润,因此希望预测的结果 y 多一些。采用上述的自定义损失函数,训练神经网络模型。
代码如下:
运行结果如下:
由代码执行结果可知,神经网络最终参数为 w1=1.03, w2=1.05,销量预测结果为 y =1.03x1 + 1.05x2。由此可见,采用自定义损失函数预测的结果大于采用均方误差预测的结果,更符合实际需求。
②若酸奶成本为 9 元,酸奶销售利润为 1 元,则制造成本大于酸奶利润,因此希望预测结果 y 小一些。采用上述的自定义损失函数,训练神经网络模型。
代码如下:
运行结果如下:
由执行结果可知,神经网络最终参数为 w1=0.96,w2=0.97,销量预测结果为 y =0.96x1 + 0.97x2。因此,采用自定义损失函数预测的结果小于采用均方误差预测的结果,更符合实际需求。
交叉熵(Cross Entropy):表示两个概率分布之间的距离。交叉熵越大,两个概率分布距离越远,两个概率分布越相异;交叉熵越小,两个概率分布距离越近,两个概率分布越相似。
二、学习率
学习率 learning_rate: 表示了每次参数更新的幅度大小。学习率过大,会导致待优化的参数在最小值附近波动,不收敛;学习率过小,会导致待优化的参数收敛缓慢。
在训练过程中,参数的更新向着损失函数梯度下降的方向。
参数的更新公式为:
由图可知,损失函数 loss 的最小值会在(-1,0)处得到,此时损失函数的导数为 0,得到最终参数 w = -1。代码如下:
运行结果如下:
由结果可知,随着损失函数值的减小,w 无限趋近于-1,模型计算推测出最优参数 w = -1。
学习率的设置
学习率过大,会导致优化的参数在最小值附近波动,不收敛;学习率过小,会导致优化的参数收敛缓慢。
例如:
①对于上例的损失函数 loss=(w+1)^2 。则将上述代码中学习率修改为 1,其余内容不变。
实验结果如下:
由运行结果可知,损失函数 loss 值并没有收敛,而是在 5 和-7 之间波动。
②对于上例的损失函数 loss=(w+1)^2 。则将上述代码中学习率修改为 0.0001,其余内容不变。
实验结果如下:
由运行结果可知,损失函数 loss 值缓慢下降,w 值也在小幅度变化,收敛缓慢。
指数衰减学习率: 学习率随着训练轮数变化而动态更新
学习率计算公式如下:
其中,LEARNING_RATE_BASE 为学习率初始值,LEARNING_RATE_DECAY 为学习率衰减率,global_step 记录了当前训练轮数,为不可训练型参数。学习率 learning_rate 更新频率为输入数据集总样本数除以每次喂入样本数。若 staircase 设置为 True 时,表示 global_step/learning rate step 取整数,学习率阶梯型衰减;若 staircase 设置为 false 时,学习率会是一条平滑下降的曲线。
例如:
在本例中,模型训练过程不设定固定的学习率,使用指数衰减学习率进行训练。其中,学习率初值设置为 0.1,学习率衰减率设置为 0.99,BATCH_SIZE 设置为 1。
代码如下:
运行结果如下:
由结果可以看出,随着训练轮数增加学习率在不断减小。
三、滑动平均
滑动平均: 记录了一段时间内模型中所有参数 w 和 b 各自的平均值。利用滑动平均值可以增强模型的泛化能力。
代码如下:
运行结果如下:
从运行结果可知,最初参数 w1 和滑动平均值都是 0;参数 w1 设定为 1 后,滑动平均值变为 0.9;当迭代轮数更新为 100 轮时,参数 w1 更新为 10 后,滑动平均值变为 1.644。随后每执行一次,参数 w1 的滑动平均值都向参数 w1 靠近。可见,滑动平均追随参数的变化而变化。
四、正则化
过拟合: 神经网络模型在训练数据集上的准确率较高,在新的数据进行预测或分类时准确率较低,说明模型的泛化能力差。
正则化: 在损失函数中给每个参数 w 加上权重,引入模型复杂度指标,从而抑制模型噪声,减小过拟合。
在本例中,我们使用了之前未用过的模块与函数:
matplotlib 模块:Python 中的可视化工具模块,实现函数可视化
终端安装指令:sudo pip install matplotlib
函数 plt.scatter():利用指定颜色实现点(x,y)的可视化
plt.scatter (x 坐标, y 坐标, c=”颜色”)
plt.show()
收集规定区域内所有的网格坐标点:
xx, yy = np.mgrid[起:止:步长, 起:止:步长] #找到规定区域以步长为分辨率的行列网格坐标点
grid = np.c_[xx.ravel(), yy.ravel()] #收集规定区域内所有的网格坐标点
plt.contour()函数:告知 x、y 坐标和各点高度,用 levels 指定高度的点描上颜色
plt.contour (x 轴坐标值, y 轴坐标值, 该点的高度, levels=[等高线的高度])
plt.show()
代码如下:
执行代码,效果如下:
首先,数据集实现可视化,x0^2 + x1^2 < 2 的点显示红色,x0^2 + x1^2 >= 2 的点显示蓝色,如图所示:
接着,执行无正则化的训练过程,把红色的点和蓝色的分开,生产曲线如下图所示:
最后,执行有正则化的训练过程,把红色的点和蓝色的点分开,生成曲线如下图所示:
对比无正则化与有正则化模型的训练结果,可看出有正则化模型的拟合曲线平滑,模型具有更好的泛化能力。
五、搭建模块化神经网络八股
前向传播:由输入到输出,搭建完整的网络结构
描述前向传播的过程需要定义三个函数:
def forward(x, regularizer):w=b=y=return y
第一个函数 forward() 完成网络结构的设计,从输入到输出搭建完整的网络结构,实现前向传播过程。该函数中,参数 x 为输入,regularizer 为正则化权重,返回值为预测或分类结果 y。
def get_weight(shape, regularizer):w = tf.Variable( )tf.add_to_collection('losses',tf.contrib.layers.l2_regularizer(regularizer)(w))return w
第二个函数 get_weight() 对参数 w 设定。该函数中,参数 shape 表示参数 w 的形状,regularizer 表示正则化权重,返回值为参数 w。其中,tf.variable() 给 w 赋初值,tf.add_to_collection() 表示将参数 w 正则化损失加到总损失 losses 中。
def get_bias(shape):b = tf.Variable( )return b
第三个函数 get_bias()对参数 b 进行设定。该函数中,参数 shape 表示参数 b 的形状,返回值为参数 b。其中,tf.variable() 表示给 b 赋初值。
反向传播:训练网络,优化网络参数,提高模型准确性。
def backward( ):x = tf.placeholder( )y_ = tf.placeholder( )y = forward.forward(x, REGULARIZER)global_step = tf.Variable(0, trainable=False)loss =
函数 backward()中,placeholder()实现对数据集 x 和标准答案 y_占位,forward.forward()实现前向传播的网络结构,参数 global_step 表示训练轮数,设置为不可训练型参数。
在训练网络模型时,常将正则化、指数衰减学习率和滑动平均这三个方法作为模型优化方法。
在 Tensorflow 中,正则化表示为:
首先,计算预测结果与标准答案的损失值
①MSE: y 与 y_的差距(loss_mse) = tf.reduce_mean(tf.square(y-y_))
②交叉熵:
ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
y 与 y_的差距(cem) = tf.reduce_mean(ce)
③自定义:y 与 y_的差距
其次,总损失值为预测结果与标准答案的损失值加上正则化项
loss = y 与 y_的差距 + tf.add_n(tf.get_collection(‘losses’))
在 Tensorflow 中,指数衰减学习率表示为:
learning_rate = tf.train.exponential_decay( LEARNING_RATE_BASE, global_step, 数据集总样本数 / BATCH_SIZE, LEARNING_RATE_DECAY, staircase=True)train_step=tf.train.GradientDescentOptimizer(learning_rate).minimize(loss,global_step=global_step)
在 Tensorflow 中,滑动平均表示为:
ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)ema_op = ema.apply(tf.trainable_variables())with tf.control_dependencies([train_step, ema_op]): train_op = tf.no_op(name='train')
其中,滑动平均和指数衰减学习率中的 global_step 为同一个参数。
用 with 结构初始化所有参数
with tf.Session() as sess:init_op = tf.global_variables_initializer() sess.run(init_op) for i in range(STEPS): sess.run(train_step, feed_dict={x: , y_: }) if i % 轮数 == 0: print
其中,with 结构用于初始化所有参数信息以及实现调用训练过程,并打印出 loss 值。
判断 python 运行文件是否为主文件
if __name__=='__main__':backward()
该部分用来判断 python 运行的文件是否为主文件。若是主文件,则执行 backword()函数。
例如:
用 300 个符合正态分布的点 X[x0, x1]作为数据集,根据点 X[x0, x1]的不同进行标注 Y_,将数据集标注为红色和蓝色。标注规则为:当 x0^2 + x1^2 < 2 时,y_ = 1,点X标注为红色;当 x0^2 + x1^2 >= 2 时,y_ = 0,点X标注为蓝色。我们加入指数衰减学习率优化效率,加入正则化提高泛化性,并使用模块化设计方法,把红色点和蓝色点分开。
代码总共分为三个模块:生成数据集 (generateds.py)、前向传播(forward.py)、反向传播(backward.py)。
①生成数据集的模块(generateds.py)
②前向传播模块(forward.py)
③反向传播模块(backward.py)
运行代码,结果如下:
由运行结果可见,程序使用模块化设计方法,加入指数衰减学习率,使用正则化后,红色点和蓝色点的分割曲线相对平滑,效果变好。
中国MOOC大学 - - 人工智能实践:Tensorflow笔记