基于信息熵确立权重的topsis法_基于信息熵和TOPSIS法的装备战场抢修排序决策模型...

基于信息熵和

TOPSIS

法的装备战场抢修排序决策模型

王海宽

;

石全

;

王广彦

;

王海丹

【期刊名称】

《军械工程学院学报》

【年

(

),

期】

2012(024)005

【摘要】

成功的战场抢修是战斗力的“倍增器”,而及时有效的战损装备抢修排

序决策是成功实施战场抢修的前提

.

在确定战场抢修基本原则基础上

,

分析了影响

战损装备战场抢修排序的因素

,

通过目标属性本身输出的信息熵客观地确定属性

权重

,

并结合

TOPSIS

法构建了装备战场抢修排序决策模型

,

最后通过实例对该模

型的有效性和实用性进行验证

.

实例表明

:

该模型能够有效地解决战场抢修中多个

战损装备的排序问题

,

是战损装备战场抢修分析及排序决策的一种有效工

.%Successful

Battlefield

Repair(BR)

will

help

to

enhance

battle

effectiveness,and

timely

and

effectual

sequencing

decision-making

of

battlefield

damaged

equipment

is

precondition

to

the

implementation

of

BR.

Regarding

basal

principles

of

BR,the

paper

analyses

factors,

defines

the

weight

of

attributes

through

information

entropy

which

is

put

out

by

attributes,

and

proposes

a

sequencing

decision-making

model of BR combined with TOPSIS method. An example of BR is given

to validate that the model is valid and practicable. The result shows that

the model which can resolve sequencing of multi-equipment effectively

is "an effective tool to analyze and sequence when repairing battlefield

damaged equipment.

【总页数】

5

(5-9)

### 基于信息熵确定权重TOPSIS实现与应用 #### 数据标准化处理 由于不同指标可能具有不同的量纲,这会使得某些数值较大的指标在计算过程中占据主导地位,从而影响最终的结果准确性。因此,在执行任何进一步的操作之前,必须对原始数据进行无量纲化处理,即标准化处理[^1]。 对于每一个评估对象 \(i\) 的第 \(j\) 项属性值 \(X_{ij}\),可以按照如下方式转换成标准形式: \[ Z_{ij}=\frac{X_{ij}-\min(X_j)}{\max(X_j)-\min(X_j)} \] 其中,\(Z_{ij}\) 表示经过线性变换后的标准化分数;而 \(\min(X_j)\) \(\max(X_j)\) 则分别代表该列中的最小值最大值。 ```python import numpy as np def normalize_data(data): min_vals = data.min(axis=0) max_vals = data.max(axis=0) ranges = max_vals - min_vals normed_data = (data - min_vals) / ranges return normed_data, ranges, min_vals ``` #### 计算各方案的信息熵及其权重 通过计算各个属性下的信息熵来衡量其不确定性水平,并据此分配相应的权重信息熵越低意味着该项属性能够提供更多的有效信息用于区分备选方案之间的优劣差别。具体公式如下所示: 设某个特定属性下所有样本点的概率分布为 \(p_i=X_{ij}/\sum_k X_{kj}, i=1,...n; j=1,...m\) ,则对应的熵可定义为: \[ E_j=-k\cdot p_j\log(p_j), k>0 \] 这里取自然对数并令常系数 \(k=(1/\ln n)\),得到修正后的表达式为: \[ e_j=k(-\sum^n_{i=1}(P_{ij})\ln(P_{ij})) \] 接着求得每个属性的重要性程度——权重向量 W : \[ w_j=(1-e_j)/\sum^m_{l=1}(1-e_l) \] ```python from math import log def calculate_entropy_and_weights(normalized_matrix): num_samples, num_features = normalized_matrix.shape entropy_vector = [] for col_index in range(num_features): probabilities = normalized_matrix[:,col_index]/np.sum(normalized_matrix[:,col_index]) valid_probabilities = probabilities[probabilities != 0] entropy_value = (-valid_probabilities * np.log(valid_probabilities)).sum() adjusted_entropy = entropy_value / log(num_samples) entropy_vector.append(adjusted_entropy) weights = [(1-x)/(num_features-sum(entropy_vector)) for x in entropy_vector] return weights ``` #### 构建理想解与负理想解 根据正向指标(越大越好)以及逆向指标(越小越好),构建两个虚拟的理想型解决方案:一个是最佳情况下的理想解 PIS (Positive Ideal Solution),另一个是最差情况下形成的 NIS(Negative Ideal Solution)。这两者分别是距离最优解最近最远的位置表示。 假设存在 m 种待评项目,则对于任意给定的一组加权规范化矩阵 Y=[y_ij], 可以写出理想解 S* 反理想解 S^- 如下: \[ S^{*}_j=max(y_{ij}),if\ it's\ benefit;\ or\ min(y_{ij}),if\ cost \] \[ S^{-}_j=min(y_{ij}),if\ it's\ benefit;\ or\ max(y_{ij}),if\ cost \] ```python def find_ideal_solutions(weighted_normalized_matrix, is_benefit_array): pis = weighted_normalized_matrix.max(axis=0)*is_benefit_array + \ weighted_normalized_matrix.min(axis=0)*(~is_benefit_array.astype(bool)) nis = weighted_normalized_matrix.min(axis=0)*is_benefit_array + \ weighted_normalized_matrix.max(axis=0)*(~is_benefit_array.astype(bool)) return pis, nis ``` #### 测量相对接近度 C* 利用欧氏距离 D 来测量实际观测值 y_ij 对应位置到理想解 s*_j 或者反理想解 s^- _j的距离 d(i,s*) d(i,s^- ) 。随后引入贴近度 c* 概念,它反映了被测实体相对于理想状态的好坏程度,范围介于零至一之间,c*=d(i,s^-)/(d(i,s*)+d(i,s^- )) 越趋近于1说明更靠近理想解。 ```python def compute_closeness_coefficients(weighted_normalized_matrix, pis, nis): distance_to_pis = ((weighted_normalized_matrix-pis)**2).sum(axis=1)**0.5 distance_to_nis = ((weighted_normalized_matrix-nis)**2).sum(axis=1)**0.5 closeness_coefficient = distance_to_nis/(distance_to_pis + distance_to_nis) return closeness_coefficient ``` 综上所述,基于信息熵确定权重TOPSIS是一种有效的多属性决策工具,适用于多种场景下的优选排序任务。这种方不仅考虑到了各项评价因子间的相互关系,而且有效地解决了传统评分体系中存在的主观偏见问题,提高了评判过程的公平性透明度[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值