基于熵权法的TOPSIS模型

基于熵权法的TOPSIS模型

1. 简介

数学建模可以结合 熵权法 T O P S I S TOPSIS TOPSIS 法各自的特点,进行评价,这种组合模型的使用在数学建模比赛中使用的非常多。

在 2023 美赛 O 奖中就有使用该方法的,往年国赛国奖中也有

2. 熵权法介绍

熵值法的主要目的是对指标体系进行赋权

熵越大说明系统越混乱,携带的信息越少,权重越小;熵越小说明系统越有序,携带的信息越多,权重越大。

熵值法是一种客观赋权方法,借鉴了信息熵思想,它通过计算指标的信息熵,根据指标的相对变化程度对系统整体的影响来决定指标的权重,即根据各个指标标志值的差异程度来进行赋权,从而得出各个指标相应的权重,相对变化程度大的指标具有较大的权重。

上方是简单介绍,具体详细原理可以参考我的博客熵权法(EWM)

3.TOPSIS法介绍

TOPSIS法是通过逼近理想解的程度来评估各个样本的优劣等级

在归一化后的原始数据矩阵中,找到有限方案中的最优方案和最劣方案,然后分别计算评价对象与最优方案和最劣方案之间的距离,并以此作为依据来评价样本的优劣等级。

上方是简单介绍,具体详细原理可以参考我的博客优劣解距离法(TOPSIS)

4. 熵权法和 TOPSIS法结合示使用

总体流程图如下所示

在这里插入图片描述

假设有 n n n 个待评价样本, p p p 项评价指标,形成原始指标数据矩阵:

X = ( x 11 . . . x 1 p ⋮ ⋱ ⋮ x n 1 ⋯ x np ) \begin{equation} \mathrm{X}=\begin{pmatrix}\mathrm{x}_{11}&...&\mathrm{x}_{1\text{p}} \\ \vdots & \ddots & \vdots \\ \mathrm{x}_{\text{n}1}&\cdots&\mathrm{x}_{\text{np}} \end{pmatrix} \end{equation} X= x11xn1...x1pxnp

4.1 标准化处理

标准化的同时进行了正向化

在论文中表达只考虑正向指标负向指标

正向指标(极大型) 标准化处理:

x i j ′   =   x j   − x m i n x m a x   − x m i n \begin{equation} \mathrm{x_{ij}^{\prime}~=~\frac{x_j~-x_{min}}{x_{max}~-x_{min}}} \end{equation} xij = xmax xminxj xmin

负向指标(极小型) 标准化处理:

x i j ′   =   x max ⁡   − x j x max ⁡   − x min ⁡ \begin{equation} \mathrm{x_{ij}^{\prime}~=~\frac{x_{\max}~-x_j}{x_{\max}~-x_{\min}}} \end{equation} xij = xmax xminx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值