支持向量机smo matlab,理解支持向量机(三)SMO算法

在支持向量机模型的求解中,我们用到了SMO算法来求解向量α。

那么什么是SMO算法?在讲SMO算法之前。我们须要先了解下面坐标上升法。

1、坐标上升法

如果有优化问题:

534614d7aa92d7175859e8701fe362b2.png

W是α向量的函数。利用坐标上升法(当然,求目标函数的最小时即为坐标下降法)求解问题最优的步骤例如以下:

34898e37e22be95a39b39bb9c7a28516.png

算法的思想为:每次仅仅考虑一个变量进行优化,将其它变量固定。这时整个函数能够看作仅仅关于该变量的函数,能够对其直接求导计算。

然后继续求其它分变量的值,整个内循环下来就得到了α的一组值,若该组值满足条件。即为我们求的值,否则继续迭代计算直至收敛。一个示意图例如以下:

ce97a8ae98995f2c97b1444fb5bf51f2.png

如图为一个二次椭圆曲线的等高线,变量维数为2,初始值在点(2,-2),可见其优化路径为折线式前进,由于算法每次仅仅在一个方向上对函数进行优化。

2、SMO算法

在讲支持向量机求目标函数最优时,通过求解对偶问题转换为求解目标函数对α的极大值,例如以下:

e9ea60758fbf9ca8631ff2e588928aac.png

当中C为惩处系数,α为要求的变量,每一个分量α_i 相应一个样本点(x_i,y_i),变量数为样本点容量N。

能够看到优化问题与上面提到的坐标上升法非常类似。參考上面讲到的坐标上升法,我们也能够选择向量α的一个变量,将其它变量固定进行优化。但与上面不同的是。该处优化问题包括了约束条件,

变量必须满足等式约束

31774cc012d84bcd07119d9bf2ef5d94.png,所以考虑每次选择两个变量进行优化。

不失一般性,将设选择的两个变量为α_1,α_2,其它变量α_i (i=3,4,…,N)是固定的。

于是优化问题的子问题能够写作:

f75dda586f5be283e6b1514acbaadb21.png

由于我们选择除α_1。α_2以外的变量固定,故可令

8b40848355d0f7fef616bfc834c7abde.png

则约束条件改写为:

91c91c77f67a598b3152a441a445a570.png

当中,y为类标签,值为±1,所以α_1 与α_2能够表示为:

4e1e75279fd77416103e74f881d8c68d.png

7522b353a81c32071a15074d62f3bc65.png为例,目标函数的约束域例如以下:

01712d09b3dc1303721039db32003c92.png

直线

7522b353a81c32071a15074d62f3bc65.png被约束条件0≤α_i≤C约束在了一个C×C的正方形中。

从图中能够看出,最优问题的子问题是求在正方形内的线段上的最优值。

这使得两个变量的最优化问题成为了实质上的单变量的最优化问题,最好还是设为变量α_2的最优化问题,由不等式约束可得α_2的取值范围:

e68d6c4d61ad7b3f7972562ea9fb3493.png

L,H分别为正方形区域内线段的端点值。

引入符号:

a389858989cff68ae9dc939c03e1f913.png

表示对输入x_i的预測值和真实输出y_i之差

eb8ae28deec4e7ff74eb5ff3019dd6b6.png

φ(x)是输入空间到特征空间的映射。

由条件:

7ce6d45660e257df3583a5b68f64800a.png

将α_1代入最优子问题的目标函数

4df2e65bb42f8ccd64df568e5779107a.png。得到仅仅包括α_2的函数,对α_2求偏导并令其为0 ,可得

391685a10051cfa67d8ab5b8ebfd5483.png的值。

134fac0f65535fd9498abc97aef30143.png

new,unc表示求偏导后还没加取值范围[L,H]时的值。称为未剪辑值。

加上取值范围约束进而得到

f7b2cbe3748044dacddd02df53135796.png 的值,再而得到

885dcd50f683356281c136adb77f48f1.png

α_2。α_1 的更新值例如以下:

55fd8bb97381b1886d5d6d5222e805e1.png

当中,new表示更新后的值,old表示更新前的值。

若α值满足停止条件,则α即为我们求的近似解。

否则又一次扫描选择两个变量继续迭代计算直至满足停止条件。

3、变量的选择

如今的问题就是怎样选择两个变量构造最优子问题。

SMO採用启示式选择方法选择变量。所谓启示式,即每次选择拉格朗日乘子时。优先选择前面样本系数中满足条件0

α_i作优化,不考虑约束条件中相等的情况是由于在界上的例子相应的系数α_i 一般都不会改变。

通过启示式搜索找到第一个变量。那么第二个应该怎样选取呢?由于要考虑算法的收敛性。第二个变量显然不是随便选的。实际上由Osuna定理,仅仅要选择的两个变量中有一个违背KKT条件。那么目标函数在一步迭代后值就会减小,而且我们希望找到的α_2 在更新后能够有足够大的变化。

由上面

ea93a32881fdb42a9aa401048eca97e0.png 的公式能够看出,其值依赖于

b0ef07dcaacf99a4ba5e772c7bdeb314.png,当α_1 确定后E_1也就确定了,因此在给定第一个变量的初始值α_i=0后,对输入例子循环遍历,找出违背KKT条件中使

b0ef07dcaacf99a4ba5e772c7bdeb314.png最大的例子点的系数作为α_2。

在特殊情况下,通过以上选择的α_2 不能使目标函数有足够的下降。那么採用下面启示式规则继续选择α_2:

遍历在间隔边界上的支持向量点,依次将其相应的变量作为α_2 试用,直到目标函数有足够的下降。若找不到合适的α_2,那么再遍历训练数据集寻找

若仍未找到。则放弃第一个α_1,又一次选择α_1 。

在α_1,α_2 完毕一次更新后,还须要对阈值b进行更新,b的更新能够通过KKT约束条件:

47cefc20a7996d00a7fa911a2366d12e.png

计算得出。

以上介绍了SMO算法的思路和大概流程。没有对算法的推导及实现上的细节做具体的介绍,大家有兴趣想要深入了解SMO的话。能够看Andrew ng的支持向量机视频和John C.Platt的《Sequential Minimal Optimization A Fast Algorithm for Trainning Support Vector Machines》。

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值