基于熵权法优劣解距离法_【评价算法】01. 熵权法确定权重

本文介绍了熵权法的基本原理和在评价算法中的应用,通过计算熵值来确定指标的权重。文章详细阐述了熵值法的步骤,包括指标的归一化处理、信息熵冗余度计算以及权重和综合得分的计算,并提供了Matlab实现的示例。
摘要由CSDN通过智能技术生成

3413b7ab5a453b18599e8fcad7d342a8.png

补充R语言版本:

张敬信:【R语言】熵权法确定权重​zhuanlan.zhihu.com
2f67b0bc4cb4ee648cd46dfc8c999176.png

一、基本原理

在信息论中,熵是对不确定性的一种度量。不确定性越大,熵就越大,包含的信息量越大;不确定性越小,熵就越小,包含的信息量就越小。

根据熵的特性,可以通过计算熵值来判断一个事件的随机性及无序程度,也可以用熵值来判断某个指标的离散程度,指标的离散程度越大,该指标对综合评价的影响(权重)越大。比如样本数据在某指标下取值都相等,则该指标对总体评价的影响为0,权值为0.

熵权法是一种客观赋权法,因为它仅依赖于数据本身的离散性。

二、熵值法步骤

1. 对

个样本,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值