* 因子分析 用于分析影响变量或支配变量的共同因子有几个,且各因子本质为何的一种统计方法 是一类降维相关分析技术,考察一组变量(指标)之间的协方差或相关系数结构,并用于解释这些变量与少数因子(潜变量)之间的关系 重点放在从一堆观测变量中去探索/挖掘出潜变量——探索性因子分析(EFA) 重点放在检验假设(即事先对潜变量的维度有了假设)——验证性因子分析(CFA) * 探索性因子分析与验证性因子分析 1.模型假设 探索性因子分析的假设: (1)所有的公共因素都相关(或都无关) (2)所有的公共因素直接影响所有的观测变量 (3)特殊因素之间相互独立 (4)所有观测变量只受一个特殊因素的影响 (5)公共因素和特殊因素相互独立 (6)观测变量与潜在变量之间的关系不是事先假定的 (7)潜在变量的个数不是在分析前确定的 * 探索性因子分析与验证性因子分析 验证性因子分析 (1)公共因素之间可以相关也可以无关 (2)观测变量可以只受某一个或几个公共因素的影响而不必受所有公共因素的影响 (3)特殊因素之间可以有相关,还可以出现不存在误差因素的观测变量 (4)公共因素和特殊因素之间相互独立 (5)观测变量与潜变量之间的关系事先假定的 (6)潜在变量的个数在数据分析前确定的 (7)模型通常要求是可识别的 * 探索性因子分析与验证性因子分析 2. 分析步骤 探索性因子分析 1)收集观测变量并 2)获得协方差阵(或相关系数矩阵) 3)确定因子个数:Kaiser准则、Screen检验 4)提取因子:主成分法、最小二乘法、最大似然法 5)因子旋转: 因子载荷阵的不唯一性,可对因子进行旋转,使因子结构朝合理方向趋近。 旋转方法:正交、斜交旋转等,常用方差最大化正交旋转 6)解释因子结构:依据因子载荷作出解释,并赋予因子含义 7)因子得分:公共因子代表原始变量,利于描述研究对象的特征 * 探索性因子分析与验证性因子分析 验证性因子分析 1)定义因子模型 2)搜集数据 3)获得协方差矩阵或相关系数矩阵 4)模型估计 5)模型评价 6)模型修正和再定义 * 验证性因子分析 CFA属于结构方程模型 (SEM with latent variables)的子模型,CFA分析的数学原理与统计程序,都是SEM的特殊应用。 CFA:必须有特定理论依据或概念构架作为基础,然后藉由数学语言来确认该理论所导出的计量模型是否合理适当。 CFA的参数估计采用“最大似然估计”,而非矩阵分解,其优点在于 提供模型拟合优度统计量 提供参数估计的标准误 * 验证性因素分析模型及其符号表示 模型的数学表达公式为: 其中, X为p×1阶的观测变量向量 ξ是n×1阶的潜变量 Λx是p×n阶因子载荷矩阵 δ为p×1阶的测量误差向量 * (1) 在验证性因素分析中,由于潜变量是不可观测的,所以因素方程 不能直接估计,为此必须导出它的观测变量的协方差阵之间的关系,对于(1)式通过对方程两边求协方差可以得到: 上式称为协方差方程。其中,Σ是观测变量之间的协方差矩阵;Φ是潜变量之间的协方差矩阵;Θδ则是测量模型中误差项之间的协方差矩阵。该方程把观测变量X的协方差矩阵分解成载荷矩阵Λx、ξ的协方差以及δ的协方差矩阵。模型的估计就是求解上面协方差方程中的各个参数的估计值,以便使模型更好地重新产生观测变量的协方差矩阵。 * (2) 模型的参数估计 在验证性因素分析中常用的参数估计的方法: ? 未加权最小二乘法(ULS)、广义最小二乘估计(GLS)、极大似然估计(ML)、工具变量法(IV) 、两阶段最小平方法(TSLS)、广义加权最小平方法(WLS)、对角加权最小平方(DWLS)? LISREL中采用的是极大似然估计(ML) 样本导出的方差协方差矩阵S: 由原始数据计算出来的关于p个观察变量的方差协方差矩阵。由于它不受任何条件限制,所以称之为非限制性方差协方差矩阵。它表示了原始变量之间的关联程度。 * 模型的参数估计 1、估计因子载荷 LISREL中采用的就是极大似然估计。对应的协方差矩阵为S,估计的总体协方差矩阵为∑。估计函数为: 注:tr(A)表示矩阵A的迹,即主对角线上所有元素之和。 由于FML是基于概率原理的非线性函数,不容易获得参数解,因此需要迭代的程序获得解。 * 模型的评价(拟合度检验) 一个好的模型就是参数的估计值使得模型隐含的方差协方差矩阵 与样本导出的方差协方差矩阵S充分地接近,或满足事先给定的标准。 验证性因子分析的总体拟合优度的统计假设是: H0:S= ,即数据完全拟合。 H1:S ,即数据不完全拟合。
单维度量表验证性因子分析_验证性因子分析CFA.ppt
最新推荐文章于 2023-02-24 17:59:47 发布
验证性因子分析(CFA)是一种结构方程模型,用于检验预先设定的因子结构。与探索性因子分析不同,CFA基于理论构架,通过最大似然估计求解模型参数,评估模型与数据的拟合度,常用于单维度量表的验证。
摘要由CSDN通过智能技术生成