单维度量表验证性因子分析_SPSS在线_SPSSAU_验证性因子分析(CFA)

本文介绍了如何解读SPSSAU进行的单维度量表验证性因子分析结果。通过分析因子载荷系数、AVE和CR指标、模型拟合指标及MI值,确定了因子与测量项的关联性和模型质量。虽然大部分测量项显示出良好聚合效度,但存在部分因子载荷不足和模型拟合不佳的情况,需要删除某些测量项以优化模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

4、SPSSAU输出结果

SPSSAU共输出6个表格,分别是CFA分析基本汇总表格,因子载荷系数表格,模型AVE和CR指标结果表格,模型拟合指标表格,因子和分析项 -

MI指标表格和因子协方差表格。关于此6个表格的解释说明如下:

表格

功能用途

指标等

CFA分析基本汇总

每个因子对应测量项数量汇总

因子对应测量项个数

因子载荷系数

聚合(收敛)效度使用,标准化载荷系数值大于0.7说明具有聚合效度

非标准化、标准化载荷系数值等

模型AVE和CR指标结果

聚合(收敛)效度使用指标,区分效度使用指标

AVE和CR指标值

模型拟合指标

模型拟合情况,共同方法偏差使用等

卡方自由度,RMSEA,RMR,CFI,NFI等

因子和分析项 - MI指标

查看因子与测量项间关系强弱,用于辅助判断和分析测量项是否应删除

MI指标

因子协方差

查看因子之间的关系强弱,辅助判断模型构建情况

因子协方差

从上表可知,本次针对共4个因子,以及20个分析项进行验证性因子分析(CFA)分析。本次分析有效样本量为215,超出分析项数量的10倍,样本量适中。

因子载荷系数值表格展示因子和测量项之间的关联关系,一般查看标准载荷系数值进行分析即可。上表格显示,B1与

### SPSS 中因子载荷系数与结构方程模型的关系 在探索性因子分析(Exploratory Factor Analysis, EFA)中,因子载荷表示观测变量与潜在因子之间的关系强度。当转向确认性因子分析(Confirmatory Factor Analysis, CFA),这是结构方程建模的一部分时,因子载荷同样用于衡量测量指标与其对应的潜伏构造间关联的程度[^1]。 对于结构方程模型(SEM),其不仅限于评估个路径上的因果效应;它还允许研究者构建复杂的多维理论框架,在这些框架内可以同时测试多个假设并估计直接、间接以及总的影响效果。SEM通过结合CFA验证量表的有效和可靠,并进一步探讨不同因素间的相互作用机制。 #### 使用SPSS AMOS 进行 SEM 分析的一般流程如下: 1. **数据准备** - 导入原始问卷调查的数据集到AMOS图形界面。 2. **绘制概念图** - 利用绘图工具创建反映预期理论假说的概念地图,定义显的观察变量和隐含的潜在变量之间可能存在的联系形式。 3. **设定初始参数** - 对每一个连接线赋予初步猜测值作为起点,通常会基于先前的研究成果或是EFA的结果给定合理的预估值。 4. **执行最大似然估计法(Maximum Likelihood Estimation)** - 计算最佳拟合度下的各条路径权重(即标准化后的因子负荷),从而得到最接近实际样本协方差矩阵的最佳解方案。 5. **检验模型适配情况** - 查看多种统计指数如卡方检验χ²/df ratio、RMSEA(root mean square error of approximation)判断所建立之模型能否良好地再现已知资料特征。 6. **修正和完善模型** - 如果发现某些方面不符合标准,则需调整原设计直至获得满意的整体能表现为止。 7. **解释结果** - 输出最终版本中的各项参数数值及其显著水平标记,据此解读各个维度的重要程度及方向正负意义。 ```spss * 示例代码展示如何读取外部CSV文件进入SPSS环境 *. GET DATA /TYPE=TXT FILE='path_to_your_file.csv' DELIMITER=",". EXECUTE. * 假设已经完成上述步骤并且现在要运行Amos程序 * !AMOS.EXE 'model_path_here'. ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值