python中矩阵特征向量怎么表示_python中计算矩阵特征向量的方法

本文介绍使用Python的numpy及scipy库计算矩阵特征向量的方法。numpy.linalg.eig(a)函数可直接求得特征值与特征向量,scipy.linalg.eig()则提供了更多功能。文中通过实例展示了如何进行矩阵运算。
摘要由CSDN通过智能技术生成

a921c4c841d0477d97c95743ec209715.png

python作为编程中较为简单的编程方法,是可以实现线性计算的,numpy库提供了矩阵运算,可以实现求取矩阵特征向量,scipy也可以实现numpy库提供的矩阵运算功能,是对numpy库提供矩阵运算的扩展,本文介绍python中计算矩阵特征向量的两种方法:1、使用numpy.linalg.eig(a)函数;2、使用scipy.linalg.eig()计算方阵的特征向量(numpy方法的拓展)。

一、使用numpy.linalg.eig(a)函数

参数:

a:想要计算奇异值和右奇异值的方阵。

返回值:

w:特征值。每个特征值根据它的多重性重复。这个数组将是复杂类型,除非虚数部分为0。当传进的参数a是实数时,得到的特征值是实数。

v:特征向量。

使用实例>>> from numpy import linalg as LA

>>> a = np.array([[1, 1j], [-1j, 1]])

>>> w, v = LA.eig(a)

>>> w; v

array([  2.00000000e+00+0.j,   5.98651912e-36+0.j]) # i.e., {2, 0}

array([[ 0.00000000+0.70710678j,  0.70710678+0.j        ],

[ 0.70710678+0.j        ,  0.00000000+0.70710678j]])

>>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]])

>>> # Theor. e-values are 1 +/- 1e-9

>>> w, v = LA.eig(a)

>>> w; v

array([ 1.,  1.])

array([[ 1.,  0.],

[ 0.,  1.]])

二、使用scipy.linalg.eig()计算方阵的特征向量(numpy方法的拓展)

1、语法格式print('Eig:',lg.eig(arr)) #求矩阵arr的特征向量

2、使用实例#coding:utf-8

from __future__ import division

from scipy import linalg as la

from scipy import optimize

import sympy

import numpy as np

sympy.init_printing()

import matplotlib.pyplot as plt

# 使用scipy求解矩阵特征值

A = np.array([[1, 3, 5], [3, 5, 3], [5, 3, 9]])

evals, evecs = la.eig(A)

eigvalues = la.eigvalsh(A)

以上就是python中计算矩阵特征向量的两种方法,希望能对你有所帮助哟~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值