● 本文适合高一上学期、高三一轮复习的同学阅读。先看视频再看文字,看视频时注意利用暂停,想清楚每一步变形的依据。
01
利用指数函数单调性比较大小
视频讲解
1、不同底指数函数图象的相对位置
在同一坐标系中有多个指数函数图象时,图象的相对位置与底数大小有如下关系:
(1)在y轴右侧,图象从上到下相应的底数由大变
小;在y轴左侧,图象从下到上相应的底数由大
变小.即无论在y轴的左侧还是右侧,底数按逆时针方向变大.这一性质可通过令x=1时,y=a去理解,如图.
(2)指数函数y=a^x与y=(1/a)^x (a>0且a≠1)的图象关于y轴对称。
2、比较幂的大小
(1)对于同底数不同指数的两个幂的大小,利用指数函数的单调性来判断;
(2)对于底数不同指数相同的两个幂的大小,利用指数函数的图像的变化规律来判断;
(3)对于底数不同指数也不同的两个幂的大小,则通过中间值 来判断。
3、比较大小举例
02
利用指数函数单调性解方程、不等式
视频讲解
解指数方程
解指数不等式
小结:
解指数方程、不等式的基本方法是先化为同底指数式,再利用指数函数单调性化为常规的方程、不等式来解,注意底数对不等号方向的影响。
03
类指数函数定义域、值域
视频讲解
小结:
解此类题的要点是设a^x=t,利用指数函数的性质求出t的范围.从而把问题转化为y=f(t)的问题。
小结:
y=a^f(x)的定义域即f(x)的定义域,求y=a^f(x)的值域可先求f(x)的值域,再利用y=a^t的单调性结合t=f(x)的范围求y=a^t的范围。
1、三个视频搞定:指数函数概念、指数函数图像及图像关系的识别、指数函数图像过定点问题
2、三个视频搞定:根式性质、根式与指数式互化、有理数指数幂性质扩展至实数指数幂
(本文部分图片与视频来自于网络,仅供学习交流用,若有不妥,请联系删除。)
人生有缘才相遇 扫码相识更有趣
微信号 :rong19711107
公众号:周老师松果数学
● 扫码联系我
zlssgsx
522

被折叠的 条评论
为什么被折叠?



