同底数幂比较大小方法_指对幂比较大小的那些事

点击蓝字|关注我们

指数对数幂函数大小比较

欢迎来到众学小课堂!由于最近高一的小朋友们正在学习指数对数幂函数这一部分内容,再加上有不少小朋友私下和我吐槽这类比较大小的题目非常“打脑壳”。于是!小李老师终于忍受不了重复讲授n次的痛苦,选择将这类比较大小的题目汇总整理并且附上独家秘笈做成一篇小推文。

基础回顾

首先,让我们先来整体复习一下指对幂函数的基本知识!

指数

2431c14ed5d26c21c8e1134718481510.png

对数

aeef0a1a5025f1d4539d85d35dbbcf0f.png

幂函数

13b0907061d4c3f89e7d513279697a38.png

比较方法

两种比较大小的方法

在复习完前面的基础知识后,就要进入到本文的重点:指数,对数,幂函数大小比较的常用方法。这一部分题目相信正在深深地折磨了很多小朋友,那么今天,小李老师就为大家讲解一下,解决比较大小问题的两个法宝——媒介法和转化法!

媒介法

首先是媒介法,媒介值主要适用于两类题目。

第一类题目是比较多个底数,指数(真数)都不相同的函数

第二类题目是一道题目同时出现底数,指数,幂函数进行比较大小

一般媒介法有两种情况,第一是以0,1作为划分界限,将函数先与0,1进行比较,再利用单调性求解。第二是选择一个或多个函数,以它为媒介对题目中的函数进行研究,一般也要利用函数的单调性。

经典例题

1965fac07107b4c99b858e45c3ed2013.png c1f8ebc25734213393c6f494874ca05a.png 4cf02495bb016a11007e1e7ce34656f3.png 1565075e44fc9bd7ee2663ed80843a2c.png

左右滑动查看答案

转化法

第二种常用的方法就是转化法,主要思路就是把不同底数,指数(真数)的函数,转化为同一个底数,指数(真数)的函数。

经典例题

97bc9a9037baf12f38d82fcb8dd97750.png 5740d47ab7d12a9480dadea0e89038e7.png

规律总结

解题套路

其实,指数对数幂函数比较大小并不复杂,解题思路大致是:先粗略判断各项与0,1的关系,接下来可以选取媒介函数利用单调性比较大小,或者转化为同底数,同指数(真数)的函数再利用单调性比较大小。

变式练习

最后的最后,再给大家布置一个小练习,答案和解析会公布在下一篇推文哦!

482c433397ffbf918319924616065062.png 74bb3786021de4382e37046d6aa87ddb.png

扫码关注我们

微信号|zhongxue_education

### 定义及区别 #### 数函数 数函数的一般形式为 \( y = a^x \),其中 \( a > 0 \) 且 \( a \neq 1 \)[^1]。这里的底数 \( a \) 是固定的常量,而自变量 \( x \) 则作为数变化。该函数的核心特征在于其增长速度非常迅速,尤其是在 \( a > 1 \) 的情况下。 #### 函数 函数的形式通常表示为 \( y = x^a \),这里 \( a \) 是一个固定实数或有理数,\( x \) 是自变量[^1]。在这种关系中,底数随输入值改变,而数保持不变。因此,函数描述的是底数的变化如何影响整个表达式的大小。 两者的主要差异体现在 **谁充当了变量的角色** 上面:对于数函数而言,变动的部分是数;而对于函数来说,则是底数发生了变化。 另外值得注意的一个方面涉及它们之间的运算性质以及图形表现上也存在显著不之处。例如,在坐标平面上绘制这两种类型的曲线时会发现形状各异——这主要是由于各自内部结构的不所决定的[^2]。 ```python import numpy as np import matplotlib.pyplot as plt # 绘制数函数图象 def exponential_function(x, base): return base ** x base_exp = 2 x_values_exp = np.linspace(-2, 4, 400) y_values_exp = exponential_function(x_values_exp, base_exp) plt.figure(figsize=(8, 6)) plt.plot(x_values_exp, y_values_exp, label=f'y={base_exp}^x') # 绘制函数图象 def power_function(x, exponent): return x ** exponent exponent_pow = 3 x_values_pow_positive = np.linspace(0.1, 4, 200) # 避免负数开偶次方根问题 x_values_pow_negative = np.linspace(-4, -0.1, 200) y_values_pow_positive = power_function(x_values_pow_positive, exponent_pow) y_values_pow_negative = power_function(x_values_pow_negative, exponent_pow) plt.plot(x_values_pow_positive, y_values_pow_positive, '--', label='y=x^{}'.format(exponent_pow), color="orange") plt.plot(x_values_pow_negative, y_values_pow_negative, '--', color="orange") plt.axhline(0, color='black',linewidth=0.5) plt.axvline(0, color='black',linewidth=0.5) plt.grid(color = 'gray', linestyle = '--', linewidth = 0.5) plt.legend() plt.title('Exponential vs Power Functions') plt.show() ``` 上述代码展示了两种典型情况下的图像比较,直观体现了两者的特性差别。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值