java 反余弦双曲线_等等, 反比例函数的图像是双曲线?

导读

本文既可作为高中生(高二, 高三)的课外知识拓展, 也可用于大学生加深对坐标变换的理解.

我们初中学过反比例函数

88294491_1

并且知道反比例函数的图像是双曲线. 两条曲线, 所以是双曲线, 没有问题

88294491_2

.

但是上了高二以后才知道, 不是所以的两条曲线都叫双曲线的, 必须要到两个定点的距离之差是一个常数的点的轨迹才能叫双曲线, 偏一点都不行. 那么问题来了:

反比例函数的图像是真·双曲线吗?

更进一步地:

如果是, 那么

它的焦点在哪里?

88294491_3

是多少?

准线是什么?

下面始终假设

88294491_4

来讨论.

首先, 我们可以作一些合理的猜测. 如果是双曲线, 那么坐标轴就是它的渐近线. 由于两渐近线垂直, 所以应该是等轴双曲线. 所以离心率

88294491_5

. 进一步地,

88294491_6

88294491_7

是它的两个顶点, 所以

88294491_8

. 这样,

88294491_3

就可以都算出来了.

那么上面的猜测对不对呢? 我们通过精确的计算来说明这个问题.

要想知道反比例函数的图像是不是双曲线, 在原有的坐标系下看不出来, 要重新建立一个坐标系, 使得双曲线能有一个形如

88294491_9

的标准方程. 所以按下面这个方式建立一个新的坐标系:

88294491_10

我把这个坐标系叫做红坐标系, 原坐标系叫黑坐标系, 并且红坐标系中的一切我都用红色字来表示. 这样一来, 就有两套坐标系了, 于是每个点都有两个坐标, 在不同的坐标系中有不同的坐标. 例如说, 如果一个点在黑坐标系中的坐标是

88294491_11

, 经过简单的计算, 可以算出这个点在红坐标系中的坐标是

88294491_12

.

对于一般的点的两个坐标, 有这样的关系(红转黑):

88294491_13

或者(黑转红):

88294491_14

如图:

88294491_15

这个坐标转换公式可以用高中的知识证明, 但是非常烦琐. 如果用大学的矩阵知识来证明,却是十分简单.

有了这组坐标转换公式, 我们可以开始解决问题了. 通过坐标转换公式, 可以把黑坐标系下的曲线方程转换成红坐标系下的曲线方程, 看看是什么样子的. 我们的反比例函数图像在黑坐标系下的方程是

88294491_16

利用红转黑的坐标转换公式, 可以得出图像在红坐标系下的方程为

88294491_17

88294491_18

天哪! 这就是双曲线的标准方程! 在红坐标系下, 它终于现形了! 一切都已经变得很熟悉:

焦点是

88294491_19

;

88294491_20

;

准线是

88294491_21

;

要注意的是, 上面的结论是在红坐标系下的, 要得到黑坐标系下的答案, 还要再用一下坐标转换公式.

根据红转黑的坐标转换公式, 黑坐标系下的焦点坐标是:

88294491_22

也就是

88294491_23

88294491_24

;

88294491_3

是双曲线的固有属性, 在不同的坐标系下当然是一样的;

根据黑转红的坐标转换公式, 黑坐标系下的准线方程是:

88294491_25

也就是

88294491_26

88294491_27

.

到现在为止, 已经圆满地解决了文章开头的疑问. 实际上, 大学的解析几何有这样的结论: 对于曲线

88294491_28

如果

88294491_29

, 那么它表示双曲线(或双曲线的退化形式);

如果

88294491_30

, 那么它表示抛物线(或抛物线的退化形式);

如果

88294491_31

, 那么它表示椭圆(或椭圆的退化形式).

利用这个结论, 将'双勾函数':

88294491_32

的表达式化简得

88294491_33

, 可知其图像也是真·双曲线(另一条渐近线是

88294491_34

).

88294491_35

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值