graphpad两组t检验_如何用 GraphPad prism进行 t 检验?

t 检验,主要用于样本含量较小(例如 n<30),总体标准差 σ 未知的正态分布资料,其中又将其分为了配对 t 检验和成组 t 检验。

一、原理及意义

配对 t 检验:又称配对样本均数 t 检验,是组内设计的比较,即相同被试者都接受相同的实验处理,所检验的对象是同一组别。

成组 t 检验:又称独立样本 t 检验,是组间设计的比较,即不同被试者接受不同的实验处理,所检验的对象是不同组别。

两种 t 检验相同点:平均值±标准差

二、操作流程-配对 t 检验

1.选择所需图表样式:

点击选择左侧 New Table & Graph 项中的 Column 选项,再点击选择右侧 Enter/import data 项中的 Ener replicate vales,stacked into columns 选项 ,最后点击选择创建。

3f86daeb6661e24975d647d404b46da5.png

2.输入数据,完善表格

在以下界面中输入数据所设置的组别。

bdfa757ef953ab0ddef10008f7718520.png

3.输入数据,完善表格

再在此处输入各组的所有的样本数据。

921e092454f50ba3ff2f62af2771c30e.png

4.输入数据,完善表格

输入组别与各组对应样本数据。

66f6c358a9e257df832d49714f825179.png

5.选择数据分析方式

点击左侧目录树中 Results 项,弹出右侧方框,再点击目录树中 XY analyses 项,选择其附属选项 column statistics,最后点击确认。

6dbcc005ebb5ad8e2c4d059e5f2f9cca.png

6.选择数据分析方式

Test if the values come from a Gaussian distribution 项中选择三项中任意一项或三项都选皆可,最后点击确认(检验数据是否呈正态分布,三种不同检验分析 D』Agootino-Pearson 法、Kolmogorov-Smirnov 法、Shapiro-Wilk 法,但分析结果相似)

59e13acfe8514eeba79bda69abf83716.png

7.结果解析

首先点击页面左侧 Results , 选择附属选项,如下图所示,D』Agootino-Pearson 法:数据表现出的 P 值。

(正态分布检验:P > 0.10 表述数据呈正态分布)

fe48aa74dbf8016ae95037bb5f38f803.png

8.结果解析

如下图所示,Shapiro-Wilk 法:数据表现出的 P 值,Kolmogorov-Smirnov 法:数据表现出的 P 值。

(正态分布检验:P > 0.10 表述数据呈正态分布)

7ce845ae69b00f2c185979276d96f71a.png

0210c1f8576deee2621584b388c6eafa.png

9.配对 t 检验是建议采用单一研究对象前后值连线的图形表达,但如果数据太多,则不适合用图形表达,选择页面左侧 Graphs 的附属选项 Data 1,再选择所需图形样式,最后点击点击确认。

15eb4a179dffe66093b3364a8455f697.png

10.点击菜单栏中 change 模块中的第一行第一个图标 ,可根据需求切换图形类型,单击此处,可更改纵坐标注释,横坐标同理。

85f4d13b4dbbbc315d8c5163cd6aca69.png

三、操作流程-成组 t 检验

1.配对 t 检验与成组 t 检验选择使用不同的数据分析方式,选择使用不同的数据分析方式前面的步骤两者相同,点击左侧目录书树中 Results 项,弹出右侧方框,点击 Column analyses 项,选择其附属选项 t tests(and nonparametric tests),点击确认。

c9c9b26ef08c508c3e697615d1fc36be.png

2.全部选默认第一个选项,最后点击确认。

65e75e9241d5396666a3f95d493f0a67.png

3.数据解析检验方差性检验 (齐与不齐);P > 0.10:表述方差齐。

93e46c04d6f127192db735505d903559.png

4.数据解析。若方差不齐:P < 0.10:表述方差不齐,则进行数据校正;点击表格顶端 t test,弹出右侧窗口,默认选项,非配对;默认选项,参数检验;选择第二项, welch 校正;最后点击确认,重新得出 P 值。

3bcea7115ffd793bc36313136ccac90d.png

5.查看结果。选择页面左侧 Graphs 的附属选项 Data 1;选择所需图形样式;最后点击确认。

033b5e14a62f6c9df1a9ed7f54ceeb6f.png

6.结果图。点击菜单栏中 change 模块中的第一行第一个图标 ,可根据需求切换图形类型。

00c874cb22b85614fe91403ae1a5a715.png

c561d99cb210e4cda2f549b40195ed35.png

### 如何在GraphPad Prism中进行两组间显著性检验 #### 使用Log Rank测试评估生存分析中的差异 当处理涉及时间因素的数据集时,特别是对于生存数据分析,在GraphPad Prism中可以利用Log Rank测试来比较两个群体之间的存活率。这种非参数统计方法非常适合用来检测不同治疗方案或其他变量对个体存活期的影响是否存在统计学意义上的区别[^1]。 为了执行此操作: - 打开软件并输入相应的生存数据; - 选择“Survival analysis”,接着指定要对比的具体分组; - 软件会自动生成Kaplan-Meier估计图表以及对应的p-value,用于判断两组之间是否有明显差距;如果p<0.05,则认为存在显著性差异。 ```python # Python模拟调用Prism API(假设) import prism_api data = { 'time': [1, 2, 3], 'status': ['alive', 'dead', 'censored'], 'group': ['control', 'treatment'] } analysis_result = prism_api.perform_survival_analysis(data) print(f"P value from Log-Rank Test is {analysis_result['log_rank_p_value']}") ``` #### Breslow (Generalized Wilcoxon) 测试作为替代选项 除了Log Rank之外,还有另一种常用的检验方式——Breslow测试,它同样适用于评估两组样本随时间变化的趋势是否一致。尽管两者都旨在衡量相同的概念,但在某些情况下可能会给出略有不同的结论。通常来说,Log Rank更加敏感于后期发生的事件,而Breslow则倾向于早期发生的情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值