方差分析(ANOVA)是科研中常用的统计方法,用于比较三组及以上数据的均值差异。但若未提前验证数据是否满足分析条件,可能导致结论错误。本文将结合GraphPad Prism软件(SPSS我实在是用的少),详细讲解方差分析前的检验流程及具体操作,助你轻松规避统计陷阱。
一、方差分析前的四大核心检验
1. 正态性检验
目的:验证数据是否服从正态分布(或近似正态)。
检验方法:Shapiro-Wilk检验(小样本)、Kolmogorov-Smirnov检验(大样本)。若P值>0.05,则接受正态性假设。
特殊情况:若数据非正态,可通过对数转换或选择非参数检验(如Kruskal-Wallis检验)替代。
2.方差齐性检验
目的:判断各组数据的方差是否相等。
常用方法:Bartlett检验(适用于正态数据)、Levene检验或Brown-Forsythe检验(对非正态数据更稳健)。若P值>0.05,则方差齐性成立。
失败处理:采用Welch方差分析或Brown-Forsythe矫正方法。
【统计03】 Brown-Forsythe 和 Welch 方差分析检验及prism中的使用
3. 独立性检验
目的:确保各组数据无关联性(如重复测量数据需用重复测量方差分析)。
验证方法:需根据实验设计判断人工核查数据来源。
4. 异常值检测
目的:排除极端值对结果的干扰。
操作建议:通过箱线图观察数据分布,若某值超过箱体1.5倍范围则视为异常值。
二、Prism实操:从数据录入到检验完成
步骤1:数据录入与整理
如前
步骤2:正态性检验
(还是用之前数据示例)
1. 点击`Analyze` → `Column Analyses` → `Normality and Lognormality Tests`,勾选需检验的列。
2. 结果解读:若P>0.05则满足正态性,这里是小样本,所以其实主要关注Shapiro-Wilk检验的P值结果。
步骤3:方差齐性检验
1. 点击`Analyze` → `Column Analyses` → `One-way ANOVA`,在参数设置中选择`Yes, Use ordinary ANOVA test`(默认执行Bartlett检验)。
2. 结果解读:若Bartlett检验拒绝原假设,认为各组方差不相等,则需使用Welch矫正方差分析。否则则不用。
步骤4:异常值检测
箱线图(Boxplot),也称为箱须图(Box-whisker Plot),是一种用于描述数据分布情况的统计图表。它通过数据集的最小值、第一四分位数(Q1)、中位数、第三四分位数(Q3)和最大值来展示数据的分布情况。箱线图不仅可以直观地识别数据集中的异常值,还可以判断数据集的离散程度和偏向。
异常值的定义
在箱线图中,异常值通常被定义为小于 Q1 - 1.5 * IQR 或大于 Q3 + 1.5 * IQR 的值,其中 IQR 是四分位距,即 Q3 与 Q1 之间的差值。
但是prism中,如果你不手动标,所有值都会直接画进箱型图,所以在prism中暂时没找到这个的好的解决。
三、总结
方差分析前的检验是确保结果可靠的关键步骤!通过Prism的直观操作,可高效完成正态性、方差齐性、异常值等验证。若条件不满足,灵活选择矫正方法或替代检验,避免盲目依赖默认分析。掌握这些技能,你的科研图表将更具说服力!