【统计04】方差分析前的必备检验及Prism实操指南

方差分析(ANOVA)是科研中常用的统计方法,用于比较三组及以上数据的均值差异。但若未提前验证数据是否满足分析条件,可能导致结论错误。本文将结合GraphPad Prism软件(SPSS我实在是用的少),详细讲解方差分析前的检验流程及具体操作,助你轻松规避统计陷阱。

一、方差分析前的四大核心检验

1. 正态性检验 


   目的:验证数据是否服从正态分布(或近似正态)。  
   检验方法:Shapiro-Wilk检验(小样本)、Kolmogorov-Smirnov检验(大样本)。若P值>0.05,则接受正态性假设。  
  特殊情况:若数据非正态,可通过对数转换或选择非参数检验(如Kruskal-Wallis检验)替代。


 

2.方差齐性检验

  
   目的:判断各组数据的方差是否相等。  
   常用方法:Bartlett检验(适用于正态数据)、Levene检验或Brown-Forsythe检验(对非正态数据更稳健)。若P值>0.05,则方差齐性成立。  
   失败处理:采用Welch方差分析或Brown-Forsythe矫正方法。

【统计03】 Brown-Forsythe 和 Welch 方差分析检验及prism中的使用

3. 独立性检验


   目的:确保各组数据无关联性(如重复测量数据需用重复测量方差分析)。  
   验证方法:需根据实验设计判断人工核查数据来源。

4. 异常值检测  


   目的:排除极端值对结果的干扰。  
   操作建议:通过箱线图观察数据分布,若某值超过箱体1.5倍范围则视为异常值。

二、Prism实操:从数据录入到检验完成

步骤1:数据录入与整理

如前

步骤2:正态性检验

(还是用之前数据示例)
1. 点击`Analyze` → `Column Analyses` → `Normality and Lognormality Tests`,勾选需检验的列。  


2. 结果解读:若P>0.05则满足正态性,这里是小样本,所以其实主要关注Shapiro-Wilk检验的P值结果。
 

步骤3:方差齐性检验
1. 点击`Analyze` → `Column Analyses` → `One-way ANOVA`,在参数设置中选择`Yes, Use ordinary ANOVA test`(默认执行Bartlett检验)。  


2. 结果解读:若Bartlett检验拒绝原假设,认为各组方差不相等,则需使用Welch矫正方差分析。否则则不用。

步骤4:异常值检测

箱线图(Boxplot),也称为箱须图(Box-whisker Plot),是一种用于描述数据分布情况的统计图表。它通过数据集的最小值、第一四分位数(Q1)、中位数、第三四分位数(Q3)和最大值来展示数据的分布情况。箱线图不仅可以直观地识别数据集中的异常值,还可以判断数据集的离散程度和偏向。

异常值的定义

在箱线图中,异常值通常被定义为小于 Q1 - 1.5 * IQR 或大于 Q3 + 1.5 * IQR 的值,其中 IQR 是四分位距,即 Q3 与 Q1 之间的差值。

但是prism中,如果你不手动标,所有值都会直接画进箱型图,所以在prism中暂时没找到这个的好的解决。

三、总结

方差分析前的检验是确保结果可靠的关键步骤!通过Prism的直观操作,可高效完成正态性、方差齐性、异常值等验证。若条件不满足,灵活选择矫正方法或替代检验,避免盲目依赖默认分析。掌握这些技能,你的科研图表将更具说服力!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小鱼干<<<

续命の咖啡❤赠与

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值