matlab谢尔宾斯三角_分形的集合方程表示.pdf

分形的集合方程表示

分形的集合方程表示

胡 扬

摘要:本文提出了用集合方程表示分形的新的数学方法,指出类似康托尔集这样的自相

似分形,可以用一个简单的集合方程的解的形式表示,并用此方法重新证明了康托尔集的一

些性质。

关键字:分形,集合方程,康托尔集,Koch 曲线

引 言

分形,通常被定义为 “一个粗糙或零碎的几何形状,可以分成数个部分,且

每一部分都(至少近似地)是整体缩小后的形状” ,即具有自相似的性质。一

般来说,分形如康托尔集、Koch 曲线等,它们的数学定义其形式比较复杂。如

何用一个简单的数学公式表示之类的分形,是一个值得研究的课题。

本文提出了一种简明且直观的集合方程的形式,定义分形,并对这种方法的

应用进行了初步探讨。

正 文

1,康托尔集,

康托尔集由德国数学家格奥尔格·康托尔在 1883 年引入,是位于一条线段上的

一些点的集合,具有许多显著和深刻的性质。最常见的构造是康托尔三分点集,

是由不断去掉线段的中间三分之一而得出。 首先从区间[0, 1]中去掉中间的三分

之一(1/3, 2/3),留下两条线段:[0, 1/3] ∪ [2/3, 1]。然后,把这两条线段

的中间三分之一都去掉, 留下四条线段: [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9]

∪ [8/9, 1]。把这个过程一直进行下去,康托尔集就是由所有过程中没有被去

掉的区间[0, 1]中的点组成。如下图:

观察这个图形,可以看出,康托尔集是一个严格自相似的集合,如果把它放

注 1:作者系复旦大学数学研究所 1995 届硕士

大 3 倍,则放大后的图形,其在[0,1]中的部份,和原图形重合,而在[2,3]中的

部份,可以用原图形向右平移 2,得到。如果,我们用 A 表示[0,1]上的康托尔

集,则可以写下下面的方程:3*A=A⊕(A+2),其中,3*A,表示 A 中的每一个元

素都乘以 3,得到的集合,而 A+2,表示 A 中每一个元素都加上 2,得到的集合,

而⊕,表示两个集合的和。下面给出严格的数学定义。

定义 1:设 R 表示实数集,C 表示复数集,集合 A 是 R(或 C)的子集,k 是一个实

数(或复数),则定义 k*A={k*a|a∈A} ,A+k={a+k| a∈A}。

定义 2:设 A,B 为两个集合,并且,A∩B 只含有有限个元素,则定义 A⊕B=A∪B。

下面我们先直观地讨论一下,3*A=A⊕(A+2),这个方程,指出它的解就是康

托尔集,而后,再给出严格的数学证明。

首先,观察方程的右边,由于 A 是[0,1]的子集,因而A+2 是[2,3]的子集,

因而右边是[0,1]∪[2,3]的子集,也就是说,右边不含(1,2)中的点,于是,3*A

中也不含(1,2)中的点,所以,A 中不包含(1/3,2/3)中的点,因而,A+2 中不包

含(7/3,8/3)中的点, 将这两个结论代入方程右边, A⊕(A+2)是[0,1/3]∪[2/3,1]

∪[2,7/3]∪[8/3,3]的子集,再回到方程左边,得到,A 是[0,1/9]∪[2/9,1/3]

∪[2/3,7/9]∪[8/9,1]的子集,将这一过程一直继续下去,不难看出,最后得到

的结果,就是康托尔集。

接下来,给出严格的数学证明,先给出康托尔集的数学定义。

a

定义 3:康托尔集A’:{ Â n  , a  =0,2}

n  n

n = 1 3

定理 1:设 A 是[0,1]的子集,并且满足方程,3*A=A⊕(A+2),则康托尔集 A’是

方程的一个解,且所有方程的解都是 A’的子集。

证明:先证明康托尔集满足该方程,设,a为康托尔集 A’中的一个点,则存在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值