python进行图像滤波_Python: scikit-image 彩色图像滤波

本文介绍了如何使用scikit-image库对彩色图像进行滤波处理,特别是通过adapt_rgb装饰器实现的each_channel和hsv_value两种模式。each_channel对RGB每个通道单独应用滤波,hsv_value则在HSV颜色模型中对V通道处理。通过sobel函数展示了滤波效果,并给出了完整代码示例。
摘要由CSDN通过智能技术生成

e141b90f04caa05af8502fa7b9a08b92.png

一般的滤波器都是针对灰度图像的,scikit-image 库提供了针对彩色图像滤波的decorator:adapt_rgb,adapt_rgb 提供两种形式的滤波,一种是对rgb三个通道分别进行处理,另外一种方式是将rgb转为hsv颜色模型,然后针对v通道进行处理,最后再转回rgb颜色模型。

针对模式一,称为 each_channel

@adapt_rgb(each_channel)

def sobel_each(image):

return filters.sobel(image)

模式二称为 hsv_value

@adapt_rgb(hsv_value)

def sobel_hsv(image):

return filters.sobel(image)

利用上述两种模式,可以对彩色图像滤波,下面是完整的用例代码;

from skimage import data

from skimage.exposure import rescale_intensity

import matplotlib.pyplot as plt

from skimage.color.adapt_rgb import adapt_rgb, each_channel, hsv_value

from skimage import filters

@adapt_rgb(each_channel

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值