10外置面板没声音_为何K歌和直播都是需要用外置独立声卡呢?

在电脑还不能发出任何声音的时候,英国的ADLIB AUDIO公司研发了第一台声卡,即使这是一块不能处理音频的声卡,但是它滴滴的蜂鸣声让电脑发出了历史性的第一声。这为后来的各种各样类型的声卡奠定了强有力的基础。我们都知道,麦克风是一种将声信号转变成电信号的转换器,而电脑是一种不能识别模拟信号的设备,要想电脑发出声音,就必须将模拟信号转换为数字信号,那么,声卡在其中就承担了这样一个角色,这也是最早的集成声卡

不过,由于主板的环境较为复杂,集成声卡在工作时,常常会受到主板上电子元器件的干扰,使得噪声增大,音质不清。而独立声卡内置更多的滤波电容和功放管,声音信号通过多次的放大和降噪电路的过滤,音质自然有所提升。

9ed0b7b87d5ca9580d3fa385e5332f4a.png

因此,不论是K歌,还是直播,现在越来越多的人愿意选择外置独立声卡了,它不仅在音质上更加具有优势,还由于不受空间地域限制的优点,能播放更多的声音特效。麦克风只起到扩大音量的作用,尽管它会对声音进行简单地调节,但是由于功能有限,一款麦克风不足以完美地演绎歌声,在唱歌时,依然需要外置独立声卡的辅助。 内置自主研发的芯片处理系统,经过反复测试,研制出最动听的声音,自定义调节不同参数,打造最适合你音色的声音效果。另有多种音效和多种场景特效模式,一键切换,轻松玩转。

对于主播来说,移动直播已成为一种潮流趋势,简易方便,室内、户外,随时随地都能开播,所以,在选择手机声卡时,一定要注意它的形状和大小,为移动直播做准备。森然播吧二代是一款手机声卡,光滑亮丽的PC面板,直观一目了然的按键,轻触手感、简单转变音效,打开手机APP,便可一键轻松开启直播,为直播K歌带来更多的选择。纵使直播的环境嘈杂,直播间的环境也不能嘈杂,因为声音是观众对主播的第一印象,噪音不断,就很难留住粉丝,要知道观众是不能忍受一点噪声的。

这款声卡能应用大多数模式,还兼容不同的K歌直播软件平衡输入输出,带独立增益调节,以及LED电平指示灯和幻象电源。并支持各种电子乐器,功能丰富多样。 游戏主播其实也需要配置声卡,在激烈的游戏中,声卡的声音效果通常会和游戏效果互相干扰,使得呈现出的声音不够清晰,游戏也不能玩得尽兴。而独立声卡则是一个独立的个体,这就避免了他们之间干扰的问题。

这款声卡内置DSP处理芯片,支持高保真的声音传输,带来身临其境的效果。而且,它还搭载了放大器,匹配扬声器,提供更高品质的声音的输出,是我们K歌直播很不错的一款神奇。

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值