matlab求微分方程的初值问题,Matlab 解常微分方程的初值问题.doc

该博客详细介绍了如何使用Matlab解决一个三阶微分方程的初值问题,包括将微分方程转化为微分方程组,编写rigid函数,利用ode45进行数值求解,并展示了解的曲线绘制过程。通过此设计,作者提升了Matlab编程和微分方程数值解的理解。
摘要由CSDN通过智能技术生成

Matlab 解常微分方程的初值问题

题目:Matlab 解常微分方程的初值问题

设计目的:

1、熟练掌握Matlab的基本编程方法,及其编程风格。

2、熟练掌握Matlab常用函数的使用。

3、与本专业相关知识相结合,掌握其在程序开发中的应用方法

以及和word、C语言等接口方法。

4、通过计算机数值求解的方式来加深微分方程解的理解。

5、熟悉初等方法可获得解析解之外的数值近似解的求解方法,提

高对差分格式的认识和离散化分析问题的技巧,加深对理论课程的学习和理解,为数学专业和信息与计算科学专业其他后继课程的学习打好基础。

设计内容:

已知一个三阶微分方程:,利用matlab软件求这个三阶微分方程在初值 下的解。

原三阶微分方程可化为:

令 则原三阶微分方程可化为微分方程组 在初值 下的解。

程序流程:

程序代码:

%编写函数文件rigid.m

function dy = rigid(t,y)

dy = zeros(3,1); % a column vector

dy(1) = y(2) ;

dy(2) =y(3);

dy(3) = 2*(1-y(1)^2)*y(3)-y(1)*y(2);

%调用函数ode45求解,时间区间为[0,10]

[t,Y] = ode45(@rigid,[0 10],[1 0 -1])

t =

0

0.0001

0.0001

0.00

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值