多项式辗转相除法求最大公约数_辗转相除法求最大公约数

本文介绍了多项式辗转相除法的概念,类似于整数的辗转相除法,用于求解多项式的最大公因式。通过不断除法和求余,最终得到的余式即为最大公因式。此外,还讨论了如何找到使得多个多项式除后分别余特定多项式的低次多项式,并给出了相应的算法步骤。
摘要由CSDN通过智能技术生成

2005-08-05

多项式的除法-辗转相除法对这个概念不了

多项式的辗转相除法!整数固然有辗转相除法的现象,多项式也有相似的性质.假定a(x)与b(x)是两个多项式.用b(x)除a(x)得商式a0(x),得余式r(x),也就是a(x)=a0(x)b(x)+r(x),  而r(x)的次数小于b(x)的次数.如果r(x)≡0,则a(x)、 b(x)的最大公因式就是b(x).  如果r(x)≡0,则以r(x)除b(x)得商式a1(x),余式r1(x),即b(x)=a1(x)r(x)+r1(x),  而r1(x)的次数小于r(x)的次数.如果r1(x)≡0,则r(x)就是a(x)与b(x)的最大公因式.  如果r1(x)≡0,则以r1(x)除...全部

多项式的辗转相除法!整数固然有辗转相除法的现象,多项式也有相似的性质.假定a(x)与b(x)是两个多项式.用b(x)除a(x)得商式a0(x),得余式r(x),也就是a(x)=a0(x)b(x)+r(x),  而r(x)的次数小于b(x)的次数.如果r(x)≡0,则a(x)、 b(x)的最大公因式就是b(x).  如果r(x)≡0,则以r(x)除b(x)得商式a1(x),余式r1(x),即b(x)=a1(x)r(x)+r1(x),  而r1(x)的次数小于r(x)的次数.如果r1(x)≡0,则r(x)就是a(x)与b(x)的最大公因式.  如果r1(x)≡0,则以r1(x)除r(x)得r(x)=a2(x)r1(x)+r2(x),  r2(x)的次数小于r1(x)的次数.这样一直下去,得出一系列的多项式r(x),r1(x),r2(x),…  它们的次数一个比一个小.当然不能无限下去,一定有时候会出现rn-1(x)=an+1(x)rn(x)+rn+1(x)  及 rn(x)=an+2(x)rn+1(x)  的现象.这样便可以得出:rn+1(x)是a(x)与b(x)的最大公因式(证明让读者自己补出).同样不难证明,如果d(x)是a(x),b(x)的最大公因式,则一定有两个多项式p(x)与q(x),使a(x)p(x)+b(x)q(x)=d(x).  特别有:如果a(x)和b(x)无公因式,则有p(x)与q(x)使a(x)p(x)+b(x)q(x)=1.  多项式既然有这一性质,就启发出应当有多项式的“神奇妙算”.  例如:有三个无公因子的多项式p(x)、q(x)、r(x),求出一个多项式f(x)使p(x)、q(x)、r(x)除之各余a(x)、b(x)、c(x).并且要f(x)的次数最低.  根据孙子原则:先找出q(x)、r(x)除尽而p(x)除余1的多项式A(x);再找出r(x)、p(x)除尽而q(x)除余1的多项式B(x);更找出p(x)、q(x)除尽而r(x)除余1的多项式C(x).则A(x)a(x)+B(x)b(x)+C(x)c(x)  就是p(x)、q(x)、r(x)除各余a(x)、b(x)、c(x)的多项式.但并非最低次.再以p(x)q(x)r(x)除之,所得出的余式就是最低次的适合要求的多项式了.用辗转相除法求最大公约数 。

收起

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值