本发明涉及信号处理领域,是一种高精度的同步挤压广义S变换信号时频分解与重构方法。
背景技术:
信号是指携带信息的一元函数或多元函数。在实际的生活中,我们每天都会接触大量的信号,例如,某医院每天看病的人数、太阳每年的黑子数等。信号处理作为信息科学的一个分支,已经渗透到科学技术的各个领域,甚至渗透到社会科学的许多领域。信号处理以傅里叶分析为理论基础,研究信号的变换、滤波和特征提取。信号是时间的函数,傅里叶分析为我们提供了新的角度看待信号,即从频率的角度去看待信号,把时间信号变换成频率的函数。
时频分析是分析时变非平稳信号的强有力工具,常见的时频分析方法有:短时傅里叶变换(STFT)、小波变换(CWT)、S变换(ST)等。其中,STFT因其窗口长度固定,而无法根据信号的频率变换自动调节分辨率,对非平稳信号处理效果较差;CWT通过对信号的时间-尺度分析,具有多分辨分析的特点,但小波基难以选择;ST能够较好的刻画信号中分量,并能实现无损逆变换,但其基本小波函数是固定的,这使其在应用中受到限制;通过ST加以推导得到广义S变换,其基本小波函数能够根据所处理问题的需要进行调整,在应用中具有更好的实用性和灵活性,但受不确定性原理影响,广义S变换时频谱的分辨率达不到最优。
同步挤压变换(SST)是Daubechies等在小波变换的基础上提出的一种新的时频变换方法。它通过严格的数学推导,把小波变换结果在一定频率范围内的时频能量“挤压”到信号的中心频率附近,达到提高时频分辨率的目的。目前已经成功的应用于信号识别、信号恢复和消噪、机械故障诊断等领域。
技术实现要素:
本发明的目的在于提供一种解决上述问题,能根据实际需要灵活地调节窗函数,适应具体信号分析的同步挤压广义S变换信号时频分解与重构方法。
为了实现上述目的,本发明提出同步挤压广义S变换信号时频分解与重构方法,包括以下步骤:
(1)获取信号x(t);
(2)利用下式对信号x(t)进行四参数广义S变换,
其中,所述四参数分别为:基本小波幅度A,能量衰减率α(α>0),能量延迟时间β,基本小波视频率f0,f为四参数广义S变换的频率,b为四参数广义S变换时间轴位移参数;
(3)对四参数广义S变换结果GSTx(f,b)求模,得到每一时频点能量,从而得到广义S变换时频谱,
SGST=|GSTx(f,b)|;
(4)基于步骤(2)中得到的四参数广义S变换结果GSTx(f,b),利用下式估计信号x(t)的瞬时频率fx(f,b),
(5)以广义S变换后的频率f为中心频率集合,把每一中心频率fl附近区间[fl-Lf,fl+Lf」内瞬时频率对应的每一