pandas 更新mysql_pandas操作mysql从放弃到入门

本文介绍了如何使用pandas操作MySQL数据库,包括读取数据、筛选、连表、删除、分组统计、排序、重命名列、转换类型等操作,并提供了详细示例代码。此外,还涉及数据透视、时间处理、字符串操作和数据可视化。
摘要由CSDN通过智能技术生成

什么是pandas

pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。

Pandas纳入了大量库和一些标准的数据模型,提供了大量能使我们快速便捷地处理数据的函数和方法。

主要包含两种数据类型:Series和DataFrame

Series可以理解为dict的升级版本,主数组存放numpy数据类型,index数据存放索引

DataFrame相当于多维的Series,有两个索引数组,分别是行索引和列索引,可以理解成Series组成的字典

相关帮助文档

一、如何读取数据库-read_sql

示例代码如下

from sqlalchemy import create_engine

import pandas as pd

username = '用户名'

password = '密码'

host = '连接地址'

db = '数据库'

port = 端口号

link = f'''mysql+pymysql://{username}:{password}@{host}:{port}/{db}?charset=utf8'''

engine = create_engine(link, pool_recycle=3600)

核心方法read_sql

log:pd.DataFrame = pd.read_sql("SELECT * FROM log ORDER BY id DESC ",engine)

执行结果如下

421eb6e2c985962c519275732054dd31.png

二、如何筛选数据

筛选创建时间大于某个时间点的记录

import datetime

log[log['create_time'] > '2020-01-15 16:14:22']

ab926c487d471bf1dfea7267026d7aff.png

筛选指定列的DataFrame

直接传递数组给给DataFrame

logs[['user_id','type']]

df04d1242e433840b463aee8eb500988.png

获取一列Series

logs['type']

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值