python字典转数据框,将标准python键值字典列表转换为pyspark数据框

Consider i have a list of python dictionary key value pairs , where key correspond to column name of a table, so for below list how to convert it into a pyspark dataframe with two cols arg1 arg2?

[{"arg1": "", "arg2": ""},{"arg1": "", "arg2": ""},{"arg1": "", "arg2": ""}]

How can i use the following construct to do it?

df = sc.parallelize([

...

]).toDF

Where to place arg1 arg2 in the above code (...)

解决方案

Old way:

sc.parallelize([{"arg1": "", "arg2": ""},{"arg1": "", "arg2": ""},{"arg1": "", "arg2": ""}]).toDF()

New way:

from pyspark.sql import Row

from collections import OrderedDict

def convert_to_row(d: dict) -> Row:

return Row(**OrderedDict(sorted(d.items())))

sc.parallelize([{"arg1": "", "arg2": ""},{"arg1": "", "arg2": ""},{"arg1": "", "arg2": ""}]) \

.map(convert_to_row) \

.toDF()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值