stata协整检验结果怎么看_PVAR模型的STATA使用指南

882ac32bfe543b53f627e1a08760c9d5.png

在知网上关于经济学研究论文的实证分析部分,涉及时间序列大多运用的是VAR模型,但对于拟合现实情况以及对模型的解释上来看,就会显得单一和理想化。若时间跨度又不长的情况下,运用VAR模型就是致命的,因为数据太少了,大大增加了论文结果的误差,同时会让答辩老师觉得你的论文就是在瞎掰。


PVAR模型理论以及适用性

Holtz-Eakin(1987)最早利用利用PVAR模型分析面板数据的内生性变量之间的互动关系,其研究的是面板数据的向量自回归模型,即将所有的变量统一视为内生变量,分析各个变量及其滞后项之间的关系。PVAR模型利用面板数据既能够有效解决个体异质性问题,又能够充分考虑个体和时间效应。

PVAR模型一般表现为

,其中i,t表现为区域和时间,j为滞后期,
为个体效应,
为时间效应,
为随机扰动项。

在实证分析中面板数据包含了更多时间的维度的数据,可以利用更多的信息进行分析研究问题的动态关系,同时能够通过截距项来捕捉数据动态调整过程中的个体差异,有效减少了数据产生的偏误。面板数据具有时间和截面空间的两个维度,从而分享了横截面数据和时间序列数据的优点,另外,由于具有更多的观察值,其推断的可靠性也有所增加。

PVAR 继承了 VAR 模型的优点,将研究变量视为内生变量,并将每一个内生变量作为系统中所有内生变量滞后值的函数,提供丰富的结构从而捕获数据的更多特征。此外,PVAR 模型允许数据中存在的个体效应与异方差性,由于大量截面数据的存在,模型允许滞后系数随时间变化,放松了数据的时间平稳性要求。


PVAR模型的建立步骤

caebf0aca2201dfc46b3de0246eb65dd.png

PVAR模型的STATA步骤

step 1:打开数据-调整格式

例如:

import excel D:Stata15paperPVAR.xlsx,sheet("Sheet1")firstrow
save D:Stata15paperPVAR.dta,replace
cd d:Stata15paper
use PVAR.dta,clear

在PVAR模型中,导入的数据前两列要分别是个体变量(地区、国家)和时间变量(年、季、月),但是大多时候,我们直接导入进来的数据中,这两列数据的格式不正确的,在STATA中无法识别。正常情况下,个体变量的数据类型应该是long(如地区1=1、地区2=2…),时间变量的数据类型应该是float。

个体变量:在do文件中输入命令

encode district, gen(dis)

生成新变量dis,在内容上和原变量district一致,格式已经改为long。如果个体变量的格式不正确,数据颜色是红色的,但在正确情况下是蓝色的。

时间变量:

在右下角Properties窗口中,有一个type选项改为float

order dis, before(year)  #将dis变量移到year之前

step 2:描述性分析

首先创建命令

xtset dis year  #对面板数据中的个体变量和时间变量进行设定

其次才是描述性分析

xtdes  #显示面板数据的结构
xtsum lngl lngi lnin  #显示面板数据的统计特征

step 3:单位根检验

在建模之前需要对时间序列进行单位根检验,如果变量序列不平稳,则可能使得脉冲响应和方差分解的结果失真。单位根检验包括检验同质单位根的LLC 和Breitung,检验异质单位根的IPS、ADF-Fisher和PP-Fisher五种方法。

  • LLC检验
xtunitroot llc lngl, trend demean lags(bic 12)  #包含线性时间趋势项又包含个体固定效应项,是条件最苛刻的一种检验
xtunitroot llc lngl, demean lags(bic 12)  #仅含个体固定效应项
xtunitroot llc lngl, noconstant demean lags(bic 12)  #不包含线性时间趋势项,也不包含个体固定效应项,是条件最宽松的一种检验
  • IPS检验
xtunitroot ips lngl, trend demean lags(bic 12)  #包含线性时间趋势项又包含个体固定效应项,是条件最苛刻的一种检验
xtunitroot ips lngl, demean lags(bic 12)  #仅含个体固定效应项
xtunitroot ips lngl, noconstant demean lags(bic 12)  #不包含线性时间趋势项,也不包含个体固定效应项,是条件最宽松的一种检验
  • ADF-Fisher检验
xtunitroot fisher lngl ,dfuller lags(12) trend demean
xtunitroot fisher lngl ,dfuller lags(12) demean
xtunitroot fisher lngl ,dfuller lags(12) noconstant demean

step 4:最优滞后阶数

pvar2 lngl lngi lnin,lag(5) soc

在操作结果中,有AIC、BIC和HQIC三个准则,每个准则下的最小值会用星号标出,星号最多的滞后阶数就是最优滞后阶数。

step 5:格兰杰因果检验

pvar2 lngl lngi lnin, lag(2) granger

step 6:脉冲响应和方差分解(平稳的情况)

pvar2 lngl lngi lnin,lag(2) irf(10)
pvar2 lngl lngi lnin,lag(2) decomp(30)

结果出现

b19252afa7ba6d16dac2e505d45df30f.png

以及

c49d53b1725eb403121d87701b8ffc74.png

如果出现非平稳的情况,那么需要进行协整检验

xtwest lngl lngi lnin, constant trend lags(2) 

最后,所有的代码结合

encode district, gen(dis)
order dis, before(year)
xtset dis year
xtdes
xtsum lngl lngi lnin

xtunitroot ips lngl, demean lags(bic 6)
xtunitroot ips lngi, demean lags(bic 2)
xtunitroot ips lnin, demean lags(bic 6)

pvar2 lngl lngi lnin,lag(5) soc
pvar2 lngl lngi lnin, lag(2) granger
pvar2 lngl lngi lnin,lag(2) irf(10)
pvar2 lngl lngi lnin,lag(2) decomp(30)

注:在进行数据建模以及检验的时候需要用到连玉君老师的pvar2的安装包

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页