我想探测显微镜图像细胞内的物体。我有很多带注释的图片(app。有对象的图像为50000,没有对象的图像为500000)。在
到目前为止,我尝试使用HOG提取特征,并使用logistic回归和LinearSVC进行分类。我尝试了几个HOG或color空间的参数(RGB、HSV、LAB),但是我没有看到很大的差别,预测率大约是70%。在
我有几个问题。我应该使用多少图像来训练描述符?我应该用多少张图片来测试预测?在
我试过用大约1000张图像进行训练,结果显示55%的阳性率,5000张图像的阳性率约为72%。但是,它也很大程度上依赖于测试集,有时一个测试集可以达到80-90%的阳性检测图像。在
下面是两个包含对象的示例和两个没有对象的图像:




另一个问题是,有时图像包含多个对象:

我应该试着增加学习集的例子吗?我应该如何选择训练集的图像,只是随机的?我还能试试什么?在
任何帮助都将非常感谢,我刚刚开始发现机器学习。我正在使用Python(scikit image&scikit learn)。在
本文探讨使用Python的HOG特征和机器学习算法(如Logistic Regression和LinearSVC)进行显微镜图像中细胞内物体的目标检测。作者遇到的问题包括训练集大小的选择、测试集的影响以及多目标图像的处理。当前检测率约为70%,并寻求提高检测准确性的方法。
&spm=1001.2101.3001.5002&articleId=113510107&d=1&t=3&u=ce0a23d2f4fb4b7ea7ee05ab8b22e1ef)
428

被折叠的 条评论
为什么被折叠?



