python图片目标检测_图像中的目标检测(HOG)

本文探讨使用Python的HOG特征和机器学习算法(如Logistic Regression和LinearSVC)进行显微镜图像中细胞内物体的目标检测。作者遇到的问题包括训练集大小的选择、测试集的影响以及多目标图像的处理。当前检测率约为70%,并寻求提高检测准确性的方法。
摘要由CSDN通过智能技术生成

我想探测显微镜图像细胞内的物体。我有很多带注释的图片(app。有对象的图像为50000,没有对象的图像为500000)。在

到目前为止,我尝试使用HOG提取特征,并使用logistic回归和LinearSVC进行分类。我尝试了几个HOG或color空间的参数(RGB、HSV、LAB),但是我没有看到很大的差别,预测率大约是70%。在

我有几个问题。我应该使用多少图像来训练描述符?我应该用多少张图片来测试预测?在

我试过用大约1000张图像进行训练,结果显示55%的阳性率,5000张图像的阳性率约为72%。但是,它也很大程度上依赖于测试集,有时一个测试集可以达到80-90%的阳性检测图像。在

下面是两个包含对象的示例和两个没有对象的图像:

ca7a1f45cdedba47ef0fdc8a2f845850.png

7cf32fd63f29214a78769ecc6c16cb04.png

4e48901739faec37a8bb469fb4e05d85.png

cbad44a44f19566c256c82eefdb9ad1c.png

另一个问题是,有时图像包含多个对象:

269cee9ef4645eb1a7df54b423675640.png

我应该试着增加学习集的例子吗?我应该如何选择训练集的图像,只是随机的?我还能试试什么?在

任何帮助都将非常感谢,我刚刚开始发现机器学习。我正在使用Python(scikit image&scikit learn)。在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值