轮廓检测_【自动化专题】工业视觉检测之轮廓提取

本文探讨了工业视觉检测中的轮廓提取技术,介绍如何利用背光源提高检测准确性,并对比了Sobel、Roberts、Prewitt、Laplacian和Canny等边缘检测算子的优缺点。此外,还提到了轮廓匹配和潜在的AI应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在工业自动化生产中,机器视觉技术广泛的应用于汽车、制药、3C制造等行业。机器视觉检测是指利用获取的产品图像作为检测和传递信息的手段和载体,以实现替代人眼进行一些尺寸测量、工件定位、产品合格与否的检测。由于在视觉检测中不需要接触待检测的产品,所以不会损坏待检产品,并且视觉检测进度高,因此在测量领域具有非常明显的优势,并得到的广泛应用。

工业视觉检测,因为在特定环境下,一般会选择光源补充照明从而提高检测准确率和稳定性。在轮廓检测项目中,如果没有安装限制的话,直接使用背光源进行拍摄,可以使用常规的面光源。如果精度要求比较高,则建议使用平行光源。

一般轮廓检测首选背光,因为背光的照射方式是从下往上(如下图3),相机成像时被物体挡住部分成黑色,反之成白色,形成鲜明对比。

5a71e15566c59c06b6b3cb280a458378.png

图1 原图

5ca5aefb0a4fc6b10c57ab0a4a8f81b0.png

图2 物体背光后的图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值