science图表_最终版本Science级组合图表绘制

本文介绍了如何使用ggcor包绘制高质量的微生物生态相关图表,包括相关系数矩阵可视化、显著性标注和不同类型的图形组合,适用于Science级别的论文。作者厚哥提供了详细的实战教程,包括ggcor的安装和使用,以及相关性分析的多种展示方式,如方形图、星形图等。此外,还展示了如何结合环境因子进行群落相关分析。
摘要由CSDN通过智能技术生成

文章选摘:微生信生物

简介:ggcor 是 厚哥最近的作品,功能完全代替了前两次的你终于可以做这张图和重大升级的两个science组合图表绘制。这里我也为大家带肋实战教程,总体来说厚哥这个ggcor包用起来还是挺方便的,将许多功能简化,为我们提供了一个很好的入门机会。所以大家也别再私信我要这下面这两篇推送的原始数据了,这次推送头条完全替代。重要事情说三遍!这是sicence组合图表最终版本别用之前的了!这是sicence组合图表最终版本别用之前的了!这是sicence组合图表最终版本别用之前的了!

这里我献出厚哥的信息:

厚缊 业余的R语言可视化重度患者个人博客:houyun.xyz

邮箱:houyunhuang@163.com

群聊

或者添加微生信生物创始人,进入微生信生物群1,与厚哥面对面:

ggcor在微生物生态领域的使用初

目前厚哥这个包还在不断开发中,但是我已经迫不及待想试试了。包的安装使用github安装函数install_github。

简单来说一下这个包用来干什么的?(下面摘抄自厚哥亲笔)相关系数矩阵可视化已经至少有两个版本的实现了,魏太云基于base绘图系统写了corrplot包,应该说是相关这个小领域中最精美的包了,使用简单,样式丰富,只能用惊艳来形容。Kassambara的ggcorrplot基于ggplot2重写了corrplot,实现了corrplot中绝大多数的功能,但仅支持“square”和“circle”的绘图标记,样式有些单调,不过整个ggcorrplot包的代码大概300行,想学习用ggplot2来自定义绘图函数,看这个包的源代码很不错。还有部分功能相似的corrr包(在写ggcor之前完全没有看过这个包,写完之后发现在相关系数矩阵变data.frame方面惊人的相似),这个包主要在数据相关系数提取、转换上做了很多的工作,在可视化上稍显不足。ggcor的核心是为相关性分析、数据提取、转换、可视化提供一整套解决方案,目前的功能大概完成了70%,后续会根据实际需要继续扩展。

if(!require(devtools))

install.packages("devtools")

if(!require(ggcor))

devtools::install_github("houyunhuang/ggcor")

待会咱们要使用这些函数完成实战,也挑选出来我喜欢的几个可视化方案。这里的示例数据都是现成的,所以大家在这里对照运行即可。

导入r包和示例数据

suppressWarnings(suppressMessages(library("ggcor")))

corr

df

df ## return a tibble

## # A tibble: 121 x 3

## x y r

## *

## 1 1 11 1

## 2 1 10 -0.852

## 3 1 9 -0.848

## 4 1 8 -0.776

## 5 1 7 0.681

## # ... with 116 more rows

## Extra attributes:

## xname: mpg cyl disp hp drat wt qsec vs am gear carb

## yname: carb gear am vs qsec wt drat hp disp cyl mpg

## type: full

## show.diag: TRUE

下面介绍几种本人喜欢的可视化方式,我这里统一将图例修改为离散型颜色:fill.bin = TRUE, legend.breaks = seq(-1, 1, length.out = 5)

注意一下开发版本才能添加颜色设置参数:,fill.bin = TRUE, legend.breaks = seq(-1, 1, length.out = 5) ,文末尾安装方式

#这里不仅仅展示了相关值,而且展示了置信区间,geom_cross用于排除不显著相关。

#

ggcor(mtcars, type = "full", cor.test = TRUE) + geom_confbox()+ geom_cross()

这里使用方形我觉得高档一些,本人比较喜欢,将不显著的去掉。

# 这里使用方形我觉得高档一些,本人比较喜欢

ggcor(mtcars, type = "full", cor.test = TRUE) +

geom_square() + geom_cross()

配合颜色填充和相关标注,加上显著性标签很容易整体把控指标的相关性。使用r = 这里厚哥添加的五角星,我们来了解一下。

# 这里使用方形我觉得高档一些,本人比较喜欢

ggcor(mtcars, type = "full", cor.test = TRUE) +

# geom_square() +

geom_star(n = 5)+

geom_cross()

NA参数去除相关值,因为颜色已经表示过相关大小了,值就省略掉吧,mark = "*"参数规范统一的显著性标签。

#配合颜色填充和相关标注,加上显著性标签很容易整体把控指标的相关性。使用r = NA参数去除相关值,因为颜色已经表示过相关大小了,值就省略掉吧,mark = "*"参数规范统一的显著性标签。

ggcor(mtcars, type = "full", cor.test = TRUE, cluster.type = "all") +

# geom_raster() +

geom_colour()+

geom_mark(r = NA,sig.thres = 0.05, size = 3, colour = "grey90")

非对称相关图形可以节省空间,很多人曾求助怎么做,其实就是将最后的出图矩阵做相应的裁剪就好了,之前我都是自己裁剪的,现在厚哥包装进去了,方便了很多。

# 非对称相关图形可以节省空间,很多人曾求助怎么做,其实就是将最后的出图矩阵做相应的裁剪就好了,之前我都是自己裁剪的,现在厚哥包装进去了,方便了很多。

suppressWarnings(suppressMessages(library(vegan))) # 使用vegan包所带的数据集

data(varechem)

data(varespec)

df03

ggcor(df03) + geom_square()

群落矩阵和环境因子相关

corr

cor.test = TRUE, cluster.type = "all")

mantel

spec.select = list(spec01 = 22:25,

spec02 = 1:4,

spec03 = 38:43,

spec04 = 15:20),

mantel.fun = "mantel.randtest")

ggcor(corr, xlim = c(-5, 14.5)) +

add_link(mantel, diag.label = TRUE) +

add_diaglab(angle = 45) +

geom_square() + remove_axis("y")

另外一种方式组合

library(cowplot)

mantel

spec.select = list(spec01 = 22:25,

spec02 = 1:4,

spec03 = 38:43,

spec04 = 15:20),

mantel.fun = "mantel.randtest")

mantel$p

labels = c("< 0.001", "< 0.01", "< 0.05", ">= 0.05"),

right = FALSE, include.lowest = TRUE)

p1

p2

geom_star(aes(r = 0.65), n = 5, ratio = 0.6) +

scale_fill_manual(values = c("darkgreen", "green", "lightgreen", "grey95"),

drop = FALSE)

plot_grid(p1, p2, ncol = 1, align = "v", labels = c('A', 'B'),

rel_heights = c(0.13*dim( varechem)[2], 1))

微生物生态学领域实战

基于phloseq我开发了一系列基于扩增子的数据分析脚本,我也将再不久将这个脚本纳入,这里大家必须学习phyloseq的封装格式和基本用法。

library("phyloseq")

library(microbiomeSeq)

library("vegan")

library("grid")

library("gridExtra")

library("ggplot2")

ps = readRDS(".//ps_OTU_.rds")

ps1 = ps

ps1 = filter_taxa(ps1, function(x) sum(x ) > 200 , TRUE);ps1

## phyloseq-class experiment-level object

## otu_table() OTU Table: [ 78 taxa and 24 samples ]

## sample_data() Sample Data: [ 24 samples by 14 sample variables ]

## tax_table() Taxonomy Table: [ 78 taxa by 7 taxonomic ranks ]

ps1 = transform_sample_counts(ps1, function(x) x / sum(x) );ps1

## phyloseq-class experiment-level object

## otu_table() OTU Table: [ 78 taxa and 24 samples ]

## sample_data() Sample Data: [ 24 samples by 14 sample variables ]

## tax_table() Taxonomy Table: [ 78 taxa by 7 taxonomic ranks ]

path = "./phyloseq_5_RDA_CCA_cor/"

dir.create(path)

vegan_otu

OTU

if(taxa_are_rows(OTU)){

OTU

}

return(as(OTU,"matrix"))

}

otu = as.data.frame(t(vegan_otu(ps1)))

mapping = as.data.frame( sample_data(ps1))

env.dat = mapping[,3:ncol(sample_data(ps1))]

env.st = decostand(env.dat, method="standardize", MARGIN=2)#

env_dat = env.st

#这里不仅仅展示了相关值,而且展示了置信区间,geom_cross用于排除不显著相关。

ggcor(env_dat, type = "full", cor.test = TRUE) + geom_confbox()+ geom_cross()

这里使用方形我觉得高档一些,本人比较喜欢,将不显著的去掉。

# 这里使用方形我觉得高档一些,本人比较喜欢

ggcor(env_dat, type = "full", cor.test = TRUE) +

geom_square() + geom_cross()

配合颜色填充和相关标注,加上显著性标签很容易整体把控指标的相关性。使用r = NA参数去除相关值,因为颜色已经表示过相关大小了,值就省略掉吧,mark = "*"参数规范统一的显著性标签。

#配合颜色填充和相关标注,加上显著性标签很容易整体把控指标的相关性。使用r = NA参数去除相关值,因为颜色已经表示过相关大小了,值就省略掉吧,mark = "*"参数规范统一的显著性标签。

ggcor(env_dat, type = "full", cor.test = TRUE, cluster.type = "all") +

# geom_raster() +

geom_colour()+

geom_mark(r = NA,sig.thres = 0.05, size = 3, colour = "grey90")

这样一来我们来挑选微生物和环境因子做相关就方便多了。

# 非对称相关图形可以节省空间,很多人曾求助怎么做,其实就是将最后的出图矩阵做相应的裁剪就好了,之前我都是自己裁剪的,现在厚哥包装进去了,方便了很多。

#计算相关

#太多OTU展示起来不太好看,这里我选择30个展示

ss = t(otu)[,1:30]

df03

ggcor(df03) + geom_square()

现在我们来组合群落和环境因子关系,这里我模拟了两个群落,这两个群落都是一样的,我通过list收纳这两个群落. xlim = c(-5, (dim(env_dat)[2] +0.5)):在厚哥的指点下修改为环境因子数量加0.5,厚哥表示可能之后这个参数会被写到函数内部。

#转置otu表格,作为第一个群落

otu2 = t(otu)

#同样赋值为第二个群落

otu3 = t(otu)

#无论多少个群落,将其使用list包起来,注意设置名称

spe = list(A = otu2,B = otu3)

#计算环境因子相关

corr

cor.test = TRUE, cluster.type = "all")

#计算环境因子和群落相关

mantel

# spec.select = list(A = 1:dim(otu2)[2]),

mantel.fun = "mantel")

#出图

ggcor(corr, xlim = c(-5,(dim(env_dat)[2] +0.5))) +

add_link(mantel, diag.label = TRUE) +

add_diaglab(angle = 45) +

geom_square() + remove_axis("y")

下面展示一个四个群落的数据

#转置otu表格,作为第一个群落

otu2 = t(otu)

#同样赋值为第二个群落

otu3 = t(otu)

#无论多少个群落,将其使用list包起来,注意设置名称

spe = list(A = otu2,B = otu3,C = otu3,D = otu3)

corr

cor.test = TRUE, cluster.type = "all")

mantel

# spec.select = list(A = 1:dim(otu2)[2]),

mantel.fun = "mantel")

ggcor(corr, xlim = c(-5, (dim(env_dat)[2] +0.5))) +

add_link(mantel, diag.label = TRUE) +

add_diaglab(angle = 45) +

# geom_square() +

geom_star(n = 5)+

remove_axis("y")

另外一种可视化群落和环境因子关系的组合图表,B图需要调整大小,这里我本来以为是线性映射,做一个变量,显然不是,我还是老老实实修改了一下大小。这里我们的群落和环境因子之间没有相关关系

library(cowplot)

#转置otu表格,作为第一个群落

otu2 = t(otu)

#同样赋值为第二个群落

otu3 = t(otu)

#无论多少个群落,将其使用list包起来,注意设置名称

spe = list(A = otu2,B = otu3,C = otu3,D = otu3)

corr

cor.test = TRUE, cluster.type = "all")

mantel

# spec.select = list(A = 1:dim(otu2)[2]),

mantel.fun = "mantel")

mantel$p

labels = c("< 0.001", "< 0.01", "< 0.05", ">= 0.05"),

right = FALSE, include.lowest = TRUE)

p1

# geom_square() +

geom_star(n = 5)+

remove_axis("x")

p2

geom_star(aes(r = 0.65), n = 5, ratio = 0.6) +

scale_fill_manual(values = c("darkgreen", "green", "lightgreen", "grey95"),

drop = FALSE)

plot_grid(p1, p2, ncol = 1, align = "v", labels = c('A', 'B'),

rel_heights = c(0.155*dim(env_dat)[2], 1))

常见问题

binned_scale找不到

这是由于ggplot版本问题,这里需要升级成新版本,来自github。

install.packages(“remotes”) remotes::install_github(“hadley/ggplot2”)

Error: ‘decode_colour’ is not an exported object from ‘namespace:farver’

这是farver版本问题

install.packages(“farver”)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值