隧道结构所处的环境条件非常复杂,材料性能、几何参数、边界条件及荷载都具有随机不确定性,传统的安全系数法和经验分析法不能很好地反映其不确定性.应用可靠性理论和推行概率设计方法进行工程结构可靠性设计,将设计中的不确定性因素加以量化分析,是当今国内外工程结构设计发展的必然趋势.当前,隧道衬砌结构采用结构可靠性理论进行设计的非常少见,且进行隧道衬砌结构可靠性设计研究的论文也并不多见.本文运用结构可靠度理论分析隧道衬砌结构随机因素的影响,反映其结构的不确定性,使分析结果更为科学合理.在结构可靠度分析方法方面,目前主要有蒙特卡罗数值模拟法、随机有限元法[1]、响应面法[2]、矩法(包括一次二阶矩法[3]、一次三阶矩法[4]、二次二阶矩法[5]、二次四阶矩法[6]等)4类.由于隧道衬砌结构的极限状态功能函数是高度非线性的,如果采用求导数的矩法可靠度计算方法,极限状态功能函数变得很难处理[7],且当功能函数高度非线性时,矩法精度低,存在一定的误差.随机有限元和响应面法需编制专门的程序,计算较复杂[8].而蒙特卡罗法在目前可靠度计算中,被认为是一种相对精确的方法,且它不受极限状态方程非线性、随机变量非正态的限制.但如果采用Fortran,Basic或C,C++语言等编制计算程序实现蒙特卡罗法计算结构可靠度,其编程也复杂,效率非常低下,而且还需要系统掌握语言的算法和编程技巧,这对广大工程技术人员来说,有相当的难度[9].而在Matlab中采用蒙特卡罗直接抽样法计算结构可靠度,能很好地解决上述问题.因次,本文根据隧道衬砌结构极限状态方程,利用Matlab的强大数值计算功能,建立可靠度计算模型,实现了在Matlab中采用蒙特卡罗直接抽样法计算隧道衬砌结构可靠度,并提出了运用结构可靠度理论进行隧道衬砌厚度设计的具体方法.1隧道衬砌结构的极限状态方程隧道衬砌结构的极限状态方程可根据现行隧道设计规范中衬砌截面抗拉和抗压检算式确定,分别建立衬砌截面抗拉极限状态方程和抗压极限状态方程.1)当偏心矩e00.2t(t为衬砌厚度)时,截面由抗压强度控制承载能力,相应的抗压极限状态方程为Za=N极限-N=kPRbtRa-N=0,(1)式中:N极限为衬砌混凝土所能承受的极限轴力(即抗力);N为计算所得的截面轴力(即载荷效应);kPR为抗力计算模式不定性;b为纵向宽度,取1m;t为截面厚度;为偏心影响系数;Ra为混凝土抗压强度.偏心影响系数的概率分布为正态,均值和变异系数计算公式为=1.0+0.65(e0/t)-1257(e0/t)2+5.44(e0/t)3,(2)=0.156+0.9(e0/t)-2.87(e0/t)2+3.05(e0/t)3.(3)2)当偏心矩e0>0.2t时,截面由抗拉强度控制承载能力,相应的抗拉极限状态方程为Zl=1.75Rl-kPS6Mbt2-Nbt,(4)式中:M为计算所得截面弯矩;Rl为混凝土极限抗拉强度;kPS为荷载效应计算模式不定性;其余变量含义同上.上述极限状态方程中,荷载效应N和M的统计特征可由蒙特卡罗有限单元法求得,其轴力和弯距均为对数正态分布,其他随机变量的统计特征可通过大量的现场调查、试验获得.2基于结构可靠度理论的结构参数设计方法与Matlab实现2.1蒙特卡罗法基本原理蒙特卡罗法又称随机抽样技术法或统计试验法,主要包括直接抽样法、重要抽样法等.它是通过结构的失效频率来估算结构的失效概率的方法,具有统计的特点.其基本原理为[10]:根据大数定理,设x1,x2,…,xn是n个独立的随机变量,若它们来自同一母体,有相同分布,且具有相同有限均值和方差,
matlab隧道建模,基于可靠度理论与Matlab的隧道衬砌结构设计与分析
最新推荐文章于 2023-09-05 00:48:40 发布