参考文献:基于子空间学习的数据表示方法研究_罗鹏
基于图正则的多视图语义子空间学习算法(Multi-view Semantic Learning, MvSL)是一种高级数据处理方法
,旨在从多个视图的角度来理解和学习数据的内在语义结构
。
该算法利用了部分标签
信息和无标签数据
,通过构建统一的图嵌套框架
,学习一个多视图数据的共同语义子空间
。以下是MvSL算法的具体介绍及其涉及的关键公式:
- 多视图数据矩阵的构建:
数据矩阵通过不同的特征构建
,表示为多视图数据矩阵
。设数据矩阵由多个视图组成,每个视图有其特定的维度
和数量
的数据点。数据矩阵可被分解为基矩阵U和
一致性编码矩阵F
。 - 图嵌套框架:
图嵌套框架包含相似图
和惩罚图
,用于对编码矩阵F
施加正则约束
。相似图
中的边表示节点间的相似度
,而惩罚图
中的边则表示节点间的分离度
。通过定义这两个图,算法能够在子空间中保留数据的局部结构信息。
- 多视图非负矩阵分解:
一致性原理是多视图学习的基础,即不同视图可以由一个共享的子空间
恢复得到。MvSL算法将数据矩阵分解
为多个基矩阵
和一个一致性编码矩阵F
,以确保不同视图的数据点在子空间中有相同的编码表示。 - 图嵌套目标方程:
图嵌套框架通过定义相似图
和惩罚图
来实施正则化
,以捕获数据的语义结构
。目标方程包括两个部分:一是基于相似图
的紧凑性
项,它促使同类
数据点在子空间中彼此接近
;二是基于惩罚图
的分离性
项,它使不同类别
的数据点在子空间中尽可能远离
。目标方程具体为:
其中,
- 代表
编码矩阵
- 代表
相似图的权重矩阵
- 是
图的拉普拉斯矩阵
- 是
正则化参数。
- 稀疏约束:
算法还利用结构化稀疏约束
,使得基矩阵中的某些基向量为 0,这样编码空间中的隐含维度
仅与部分视图相关联。这种约束提高了模型的表示能力和灵活性。
通过以上步骤,MvSL算法不仅能够处理多视图数据,还能在子空间中捕捉数据的语义结构
,同时利用部分标签
信息来指导学习过程,最终实现对多视图数据的深度理解和有效表示。