观察归纳猜想验证

前言

素材备用

函数中

例1【倒序相加法】【函数性质的应用】定义在\(R\)上的函数满足\(f(\cfrac{1}{2}+x)+f(\cfrac{1}{2}-x)=2\)

求值:\(f(\cfrac{1}{8})+f(\cfrac{2}{8})+f(\cfrac{3}{8})+\cdots+f(\cfrac{7}{8})=7\)

分析:由\(f(\cfrac{1}{2}+x)+f(\cfrac{1}{2}-x)=2\)可知,两个自变量之和为\(1\)时,其函数值之和为\(2\),故\(f(\cfrac{1}{8})+f(\cfrac{1}{8})=2\),等等,

又由已知可知,\(f(1-x)+f(x)=2\),令\(x=\cfrac{1}{2}\),可得\(f(\cfrac{1}{2})=f(\cfrac{4}{8})=1\)

\(f(\cfrac{1}{8})+f(\cfrac{2}{8})+f(\cfrac{3}{8})+\cdots+f(\cfrac{7}{8})=7\)

引例1已知函数\(f(x)=x+sin\pi x-3\),则\(f(\cfrac{1}{2017})+f(\cfrac{2}{2017})+\cdots\) \(+f(\cfrac{4032}{2017})+f(\cfrac{4033}{2017})\)的值为______.

【观察】:注意到\(\cfrac{1}{2017}+\cfrac{4033}{2017}=\cfrac{4034}{2017}=2\)\(\cfrac{2}{2017}+\cfrac{4032}{2017}=\cfrac{4034}{2017}=2\)\(\cdots\)

【归纳】:以上诸多表达式,我们一般不会一一验证,如果我们用\(x\)\(2-x\)来代表上述不同表达式中的自变量,则到两端等距离的两项的函数值的和就可以归纳为\(f(x)+f(2-x)\)

【猜想】:是否对任意\(x\),都满足\(f(x)+f(2-x)=m\)(\(m\)为常数)?

【验证】:\(f(x)+f(2-x)=x+sin\pi x-3+(2-x)+sin\pi(2-x)-3\)

\(=sin\pi x+sin(2\pi-\pi x)-4=sin\pi x-sin\pi x-4=-4\)

结论:\(f(x)+f(2-x)=-4\)

解析:故\(f(\cfrac{1}{2017})+f(\cfrac{2}{2017})+\cdots\) \(+f(\cfrac{4032}{2017})+f(\cfrac{4033}{2017})\)

\(=[f(\cfrac{1}{2017})+f(\cfrac{4033}{2017})]+[f(\cfrac{2}{2017})+f(\cfrac{4032}{2017})]+\cdots+[f(\cfrac{2016}{2017})+f(\cfrac{2018}{2017})]+f(\cfrac{2017}{2017})\)

\(=2016\times(-4)+f(1)=-8064+1+0-3=-8066\),故选\(D\)

引例2【利用类对称性求值】【2017宝鸡中学第一次月考第15题】已知函数\(f(x)=\frac{x^2}{1+x^2}\),则\(2f(2)+\)\(2f(3)+\)\(\cdots+2f(2017)\)\(+f(\frac{1}{2})+\)\(f(\frac{1}{3})\)\(+\cdots+f(\frac{1}{2017})\)\(+\frac{1}{2^2}f(2)+\)\(\frac{1}{3^2}f(3)+\cdots+\)\(\frac{1}{2017^2}f(2017)\)的值为多少?

分析:从研究函数的特殊性质入手,切入点是给定式子的结构;注意到自变量有\(2\)\(\cfrac{1}{2}\)

所以先尝试探究\(f(x)+f(\frac{1}{x})\),结果,\(f(x)+f(\frac{1}{x})=\frac{x^2}{1+x^2}+\cfrac{(\frac{1}{x})^2}{1+(\frac{1}{x})^2}=1\)

这样就可以将中的一部分求值,剩余其他部分里面的代表为\(f(2)+\cfrac{1}{2^2}f(2)\)

故接下来探究\(f(x)+\cfrac{1}{x^2}f(x)=?\),结果发现\(f(x)+\cfrac{1}{x^2}f(x)=\cfrac{x^2}{1+x^2}+\cfrac{1}{x^2}\cdot\cfrac{x^2}{1+x^2}=1\)

到此我们以及对整个题目的求解心中有数了,则整个题目的求解思路基本清晰了。

解析:由\(f(x)+f(\cfrac{1}{x})=1\)\(f(x)+\cfrac{1}{x^2}f(x)=1\),可将所求式子变形得到:

\(2f(2)+2f(3)+\cdots+2f(2017)+f(\frac{1}{2})+f(\frac{1}{3})+\cdots+f(\frac{1}{2017})+\frac{1}{2^2}f(2)\) \(+\frac{1}{3^2}f(3)+\cdots+\)\(\frac{1}{2017^2}f(2017)\)

\(=\{[f(2)+f(\frac{1}{2})]+[f(3)+f(\frac{1}{3})]+\cdots+[f(2017)+f(\frac{1}{2017})]\}\) \(+\{[f(2)+\frac{1}{2^2}f(2)]+[f(3)+\frac{1}{3^2}f(3)]+\cdots++[f(2017)+\frac{1}{2017^2}f(2017)]\}\)

\(=2016+2016=4032\).

数列中的观察归纳,

类比推理中

二项式定理中

数学归纳法中

例4【数学归纳法的难点:增加的项数】

数学归纳法证明:“\(1+\cfrac{1}{2}+\cfrac{1}{3}+\cdots+\cfrac{1}{2^n-1}<n(n\in N^*,n>1)\)”,由\(n=k(k>1)\)不等式成立,推证\(n=k+1\)时,左边应增加的项数是____________。

观察:左边的和式是一系列的分式之和,分子都是\(1\),分母从自然数\(1\)开始,逐项增加\(1\),末项为\(2^n-1\),由此得到,

\(n=k\)时,左端的和式为\(1+\cfrac{1}{2}+\cfrac{1}{3}+\cdots+\cfrac{1}{2^k-1}\)

\(n=k+1\)时,左端的和式为\(1+\cfrac{1}{2}+\cfrac{1}{3}+\cdots+\cfrac{1}{2^k-1}+\cfrac{1}{2^k}+\cfrac{1}{2^k+1}+\cdots+\cfrac{1}{2^(k+1)-1}\)

增加的项数可以借助等差数列求项数的公式求解\(n=\cfrac{a_n-a_1}{d}+1\)

故增加的项数为\(\cfrac{2^{k+1}-1-2^k}{1}+1=2^{k+1}-2^k=2^k\),即增加的项数为\(2^k\)项。

例4-1【数学归纳法的难点:增加的项数】

用数学归纳法证明\(\cfrac{1}{n+1}+\cfrac{1}{n+2}+\cfrac{1}{n+3}+\cdots+\cfrac{1}{2n}≥\cfrac{11}{34}\)时,由\(n=k\)\(n=k+1\),不等式左边的变化是【】

$A.$增加$\cfrac{1}{2(k+1)}$项
$B.$增加$\cfrac{1}{2k+1}$和$\cfrac{1}{2k+2}$两项
$C.$增加$\cfrac{1}{2k+1}$和$\cfrac{1}{2k+2}$两项同时减少$\cfrac{1}{k+1}$项
$D.$以上都不对

解析:当\(n=k\)时,左边=\(\cfrac{1}{k+1}+\cfrac{1}{k+2}+\cfrac{1}{k+3}+\cdots+\cfrac{1}{2k}\)

\(n=k+1\)时,左边=\(\cfrac{1}{k+2}+\cfrac{1}{k+3}+\cfrac{1}{k+4}+\cdots+\cfrac{1}{2(k+1)}\)

故由“\(n=k\)”变成“\(n=k+1\)”时,不等式左边的变化是\(\cfrac{1}{2k+1}+\cfrac{1}{2k+2}-\cfrac{1}{k+1}\),故选\(C\)

验证

所举的函数例子虽说不是抽象函数,但对称性的验证同样适用。

例1【2017全国卷1文科第9题高考真题】已知函数\(f(x)=lnx+ln(2-x)\),则【】

$A.$在$(0,2)$上单调递增
$B.$在$(0,2)$上单调递减
$C.y=f(x)$的图像关于直线$x=1$对称
$D.y=f(x)$的图像关于点$(1,0)$对称

分析:由于函数\(f(x)\)是复合函数,定义域要使\(x>0,2-x>0\),即定义域是\((0,2)\)

\(f(x)=ln[x(2-x)]=ln[-(x-1)^2+1]\),则由复合函数的单调性法则可知,

\((0,1)\)上单增,在\((1,2)\)上单减,故排除\(A\)\(B\)

若函数\(y=f(x)\)关于点\((1,0)\)对称,则函数\(f(x)\)必然满足关系:\(f(x)+f(2-x)=0\)

若函数\(y=f(x)\)关于直线\(x=1\)对称,则函数\(f(x)\)必然满足关系:\(f(x)=f(2-x)\)

接下来我们用上述的结论来验证,由于\(f(x)=lnx+ln(2-x)\)

\(f(2-x)=ln(2-x)+ln(2-(2-x))=ln(2-x)+lnx\),即满足\(f(x)=f(2-x)\),故函数\(y=f(x)\)的图像关于直线\(x=1\)对称,选\(C\)

再来验证\(D\),发现\(f(x)+f(2-x)=2[lnx+ln(2-x)]\neq 0\)\(D\)选项不满足。故选\(C\)

例2【2018高三文科训练题】已知函数\(f(x)=lg(4x-x^2)\),则【】

$A.f(x)$在$(0,4)$上单调递增
$B.f(x)$在$(0,4)$上单调递减
$C.y=f(x)$的图像关于直线$x=2$对称
$D.y=f(x)$的图像关于点$(2,0)$对称

分析:令内函数\(g(x)=4x-x^2>0\),得到定义域\((0,4)\),又\(g(x)=-(x-2)^2+4\),故内函数在\((0,2]\)单减,在\([2,4)\)单增,外函数只有单调递增,故复合函数\(f(x)\)\((0,2]\)单减,在\([2,4)\)单增,故排除\(A\)\(B\)

要验证\(C\)选项,只需要验证\(f(x)=f(4-x)\)即可,这是\(y=f(x)\)的图像关于直线\(x=2\)对称的充要条件;

\(f(4-x)=lg[4(4-x)-(4-x)^2]=lg(16-4x-16+8x-x^2)=lg(4x-x^2)=f(x)\),故选\(C\)

若要验证\(D\)选项,只需要利用\(y=f(x)\)的图像关于点\((2,0)\)对称的充要条件,即验证\(f(x)+f(4-x)=0\)即可。自行验证,不满足。

故本题目选\(C\).

转载于:https://www.cnblogs.com/wanghai0666/p/11155735.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
资源包主要包含以下内容: ASP项目源码:每个资源包中都包含完整的ASP项目源码,这些源码采用了经典的ASP技术开发,结构清晰、注释详细,帮助用户轻松理解整个项目的逻辑和实现方式。通过这些源码,用户可以学习到ASP的基本语法、服务器端脚本编写方法、数据库操作、用户权限管理等关键技术。 数据库设计文件:为了方便用户更好地理解系统的后台逻辑,每个项目中都附带了完整的数据库设计文件。这些文件通常包括数据库结构图、数据表设计文档,以及示例数据SQL脚本。用户可以通过这些文件快速搭建项目所需的数据库环境,并了解各个数据表之间的关系和作用。 详细的开发文档:每个资源包都附有详细的开发文档,文档内容包括项目背景介绍、功能模块说明、系统流程图、用户界面设计以及关键代码解析等。这些文档为用户提供了深入的学习材料,使得即便是从零开始的开发者也能逐步掌握项目开发的全过程。 项目演示与使用指南:为帮助用户更好地理解和使用这些ASP项目,每个资源包中都包含项目的演示文件和使用指南。演示文件通常以视频或图文形式展示项目的主要功能和操作流程,使用指南则详细说明了如何配置开发环境、部署项目以及常见问题的解决方法。 毕业设计参考:对于正在准备毕业设计的学生来说,这些资源包是绝佳的参考材料。每个项目不仅功能完善、结构清晰,还符合常见的毕业设计要求和标准。通过这些项目,学生可以学习到如何从零开始构建一个完整的Web系统,并积累丰富的项目经验。
资源包主要包含以下内容: ASP项目源码:每个资源包中都包含完整的ASP项目源码,这些源码采用了经典的ASP技术开发,结构清晰、注释详细,帮助用户轻松理解整个项目的逻辑和实现方式。通过这些源码,用户可以学习到ASP的基本语法、服务器端脚本编写方法、数据库操作、用户权限管理等关键技术。 数据库设计文件:为了方便用户更好地理解系统的后台逻辑,每个项目中都附带了完整的数据库设计文件。这些文件通常包括数据库结构图、数据表设计文档,以及示例数据SQL脚本。用户可以通过这些文件快速搭建项目所需的数据库环境,并了解各个数据表之间的关系和作用。 详细的开发文档:每个资源包都附有详细的开发文档,文档内容包括项目背景介绍、功能模块说明、系统流程图、用户界面设计以及关键代码解析等。这些文档为用户提供了深入的学习材料,使得即便是从零开始的开发者也能逐步掌握项目开发的全过程。 项目演示与使用指南:为帮助用户更好地理解和使用这些ASP项目,每个资源包中都包含项目的演示文件和使用指南。演示文件通常以视频或图文形式展示项目的主要功能和操作流程,使用指南则详细说明了如何配置开发环境、部署项目以及常见问题的解决方法。 毕业设计参考:对于正在准备毕业设计的学生来说,这些资源包是绝佳的参考材料。每个项目不仅功能完善、结构清晰,还符合常见的毕业设计要求和标准。通过这些项目,学生可以学习到如何从零开始构建一个完整的Web系统,并积累丰富的项目经验。
资源包主要包含以下内容: ASP项目源码:每个资源包中都包含完整的ASP项目源码,这些源码采用了经典的ASP技术开发,结构清晰、注释详细,帮助用户轻松理解整个项目的逻辑和实现方式。通过这些源码,用户可以学习到ASP的基本语法、服务器端脚本编写方法、数据库操作、用户权限管理等关键技术。 数据库设计文件:为了方便用户更好地理解系统的后台逻辑,每个项目中都附带了完整的数据库设计文件。这些文件通常包括数据库结构图、数据表设计文档,以及示例数据SQL脚本。用户可以通过这些文件快速搭建项目所需的数据库环境,并了解各个数据表之间的关系和作用。 详细的开发文档:每个资源包都附有详细的开发文档,文档内容包括项目背景介绍、功能模块说明、系统流程图、用户界面设计以及关键代码解析等。这些文档为用户提供了深入的学习材料,使得即便是从零开始的开发者也能逐步掌握项目开发的全过程。 项目演示与使用指南:为帮助用户更好地理解和使用这些ASP项目,每个资源包中都包含项目的演示文件和使用指南。演示文件通常以视频或图文形式展示项目的主要功能和操作流程,使用指南则详细说明了如何配置开发环境、部署项目以及常见问题的解决方法。 毕业设计参考:对于正在准备毕业设计的学生来说,这些资源包是绝佳的参考材料。每个项目不仅功能完善、结构清晰,还符合常见的毕业设计要求和标准。通过这些项目,学生可以学习到如何从零开始构建一个完整的Web系统,并积累丰富的项目经验。
哥德巴赫猜想是一个数论问题,它的内容是:任何一个大于2的偶数都可以表示为两个质数之和。Python可以用来验证哥德巴赫猜想的有效性。下面是一种验证方法: 1. 首先,我们需要编写一个函数来判断一个数是否为质数。一个简单的方法是遍历从2到该数的平方根之间的所有整数,判断是否能整除该数。如果能整除,则该数不是质数;如果不能整除,则该数是质数。 2. 接下来,我们可以编写一个函数来验证哥德巴赫猜想。该函数接受一个大于2的偶数作为参数,并尝试找到两个质数之和等于该偶数。我们可以使用两个嵌套的循环来遍历所有可能的质数组合,并检查它们的和是否等于给定的偶数。 3. 如果找到了满足条件的质数组合,则返回True,表示哥德巴赫猜想成立;如果遍历完所有可能的组合仍未找到满足条件的组合,则返回False,表示哥德巴赫猜想不成立。 下面是一个简单的Python代码示例来验证哥德巴赫猜想: ```python import math def is_prime(n): if n <= 1: return False for i in range(2, int(math.sqrt(n)) + 1): if n % i == 0: return False return True def verify_goldbach_conjecture(num): if num % 2 != 0 or num <= 2: return False for i in range(2, num // 2 + 1): if is_prime(i) and is_prime(num - i): return True return False # 示例使用 num = 10 result = verify_goldbach_conjecture(num) print(f"The Goldbach conjecture is {result} for the number {num}.") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值