(Problem 14)Longest Collatz sequence

The following iterative sequence is defined for the set of positive integers:

n →n/2 (n is even) n → 3n + 1 (n is odd)

Using the rule above and starting with 13, we generate the following sequence:

13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1

It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms. Although it has not been proved yet (Collatz Problem), it is thought that all starting numbers finish at 1.

Which starting number, under one million, produces the longest chain?

NOTE: Once the chain starts the terms are allowed to go above one million.

题目大意:

以下迭代序列定义在整数集合上:

n → n/2 (当n是偶数时) n → 3n + 1 (当n是奇数时)

应用以上规则,并且以数字13开始,我们得到以下序列:

13  → 40  → 20  → 10  → 5  → 16  → 8  → 4  → 2  → 1

可以看出这个以13开始以1结束的序列包含10个项。虽然还没有被证明(Collatz问题),但是人们认为在这个规则下,以任何数字开始都会以1结束。

以哪个不超过100万的数字开始,能给得到最长的序列? 注意: 一旦序列开始之后,也就是从第二项开始,项是可以超过100万的。

方法1:

#include<stdio.h>
#include<math.h>
#include<stdbool.h>

int powcount(long long n)  //计算2的幂数
{
    int count=0;
    while(n>>=1) count++;
    return count;
}

bool ispower(long long v)  //判断n是否为2的幂
{
    if(((v & (v - 1)) == 0))  return true;
    else return false;
}

int length(long long n)
{
    int sum=1;
    while(1)
    {
        if(n==1) break;
        if((n & 1)==0)
        {
            if(ispower(n)) return sum+powcount(n);
            else n=n/2;
        }
        else n=3*n+1;
        sum++;
    }
    return sum;
}

int main()
{
    int i,t,k,max=0;
    for(i=2; i<1000000; i++)
    {
        t=length(i);
        if(t>max)
        {
            max=t;
            k=i;
        }
    }
    printf("%lld\n",k);
    return 0;
}

方法2:

#include<stdio.h>
#include<math.h>
#include<stdbool.h>

int a[1000001];

void find()
{
    long long i,j,k,f,sum,max=0;
    a[1]=1,a[2]=2;
    for(j=3; j<1000000; j++)
    {
        sum=1,k=i=j;
        while(1)
        {
            if((i & 1)==0)
            {
                i=i/2;
                if(i<k)
                {
                    a[k]=sum+a[i];
                    break;
                }
            }
            else
            {
                i=3*i+1;
            }
            sum++;
        }
        if(a[k]>max)
        {
            max=a[k];
            f=k;
        }
    }
    printf("%d\n",f);
}

int main()
{
    find();
    return 0;
}

 

Answer:
837799

 

 

转载于:https://www.cnblogs.com/acutus/p/3545218.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值