Numpy库数据处理基础

Numpy是python自带的库,一般用来做高效的数据处理,下面用python3.6简单的介绍一下它的基本用法。

在使用Nump库时需要提前调用,调用语句为  import numpy,通常为了方便书写也会写成import numpy as np。申明之后就可以使用numpy里面的方法了。

1、数组的构造以及所构造数组类型的查看

a=np.array([1,2,3])  #构建一个一维的数组

b=np.array([1,2,3],[4,5,6])  #构建一个二维的数组

print(type(a),type(b),a.shape,b.shape) #type()可以查看a,b的类型,a.shape可以查看a的结构

print(a.dtype)  #dtype可以查看a中具体元素的数据类型

2、快速生成一些常用的数组

c1=np.zeros((3,2)) #生成3*2的全零数组

c2=np.ones((3,2)) #生成3*2的全一数组

c3=np.full((3,2),7) #生成3*2的全七数组

c4=np.eye(7) #生成7*7的对角线全为一的数组

c5=np.random.random((3,2))  #随机生成一个3*2的数组

3、数组的基本运算

对上面生成的数组做后续计算

#两个数组对应元素求和(两种用法作用相同)

print(a+b)

print(np.add(a,b))

#对应元素做差

print(a-b)

prin(np.subtract(a,b))

#对应元素相乘

print(a*b)

print(np.multiply(a,b))

#数组的内积

print(a.dot(b))

print(np.dot(a,b))

#对应元素作商

print(a/b)

print(np.divide(a,b))

#逐元素求平方根

print(np.sqrt(a))

 

重新定义一组数组

x=np.array([1,2],[5,6])

print(np.sum(x)) #求x中所有元素的和

print(np.sum(x,axis=0)) #求数组x每一列的和

print(np.sum(x,axis=1)) #求数组x每一行的和

print(x.T) #求x的转置

print(x.I) #求x的伴随矩阵

print(x**(-1)) #求x的逆矩阵

 

注意:现存在数组a,b为a的切片,若对b中的数据进行新的赋值,a中的数字也会随之改变

 

转载于:https://www.cnblogs.com/zhanghuahennuli/p/7860278.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值