TensorFlow之Tensor(4)

Tensor(张量)

张量的维度(秩):Rank/Order

维度值

名称维度值名称
0标量33阶张量
1向量......
2矩阵NN阶张量

Tensor的属性:

A. 数据类型 dtype

    例如:tf.float32,tf.int8/16/32,tf.uint8/16,tf.string,tf.bool,tf.complex64.....

B. 形状Shape

C. 其他

 

几种Tensor:

Constant【常量】、Placeholder【占位符】、Variable【变量】,SparseTensor【稀疏张量】。

tf.constant

例如:

1 import tensorflow as tf
2 
3 tensor = tf.constant([1,2,3,4,5,6,7])
4 const = tf.constant(3)
View Code

 tf.Variable

示例:

1 var = tf.Variable(3)
2 
3 var1 = tf.Variable(4, dtype=tf.int64)
View Code

tf.placeholder(tf.float32, shape=(1024, 1024))

 

tf.SparseTensor: indices【下标】、values【值】、dense_shape【形状】

稀疏张量,类似于线性代数中的“稀疏矩阵”。

《稀疏矩阵》:在矩阵中,若数值为0的元素数目远远多于非0元素的数目,并且非0元素分布没有规律的矩阵。

示例:

SparseTensor(indices=[ [0, 0],[1, 2] ], values=[1,2], dense_shape=[3, 4])

 

Tensor表示法:

类型  名字:索引  形状    数据类型

Tensor  (  "Mul:0",     shape=(),    dtype=float32)

 

代码示例:

 1 # -*- coding:UTF-8 -*-
 2 
 3 #引入tensorflow
 4  import tensorflow as tf
 5  
 6  #创建两个常量Tensor
 7  const1 = tf.constant([2, 2])
 8  const2 = tf.constant([[4], 
 9                        [4]])
10  
11  multiple = tf.matmul(const1, const2)
12  
13  #创建了Session(会话)对象
14  sess = tf.Session()
15  
16  #用Session的run方法来实际运行multiple这个矩阵的乘法操作
17  result = sess.run(multiple)
18  
19  #用print打印矩阵乘法的结果
20  print (result)
21  
22  if const1.graph is tf.get_default_graph():
23      print ("const1所在的图(Graph)是当前上下文默认的图 ")
24      
25 #关闭已用完的Session(会话)
26 sess.close()
27 
28 
29 #第二种方法来创建/关闭Session
30 with tf.Session() as sess:
31     result2 = sess.run(multiple)
32     print ("Multiple的结果是 " % result2) 
View Code

 

转载于:https://www.cnblogs.com/xyqiu90-365/p/9723577.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值