假如令β=k1*α1+k2*α2...kn*αn
其中αi=(xi1,xi2...xim)T
β=(y1,y2...ym)T
则A和分别为
和
如果r(A)=r()<n,有无穷解
r(A)!=r(),无解
r(A)=r()=n,唯一解
因此,如果r(A)=m,则行向量必定线性无关,加上b后的增广矩阵依然线性无关,则Ax=b必定有解。
如果有解,解的情况为
其中,除去特解,剩下的部分就是Aα=0时方程组的基础解系,特解为Aα=β的一个特解
假如令β=k1*α1+k2*α2...kn*αn
其中αi=(xi1,xi2...xim)T
β=(y1,y2...ym)T
则A和分别为
和
如果r(A)=r()<n,有无穷解
r(A)!=r(),无解
r(A)=r()=n,唯一解
因此,如果r(A)=m,则行向量必定线性无关,加上b后的增广矩阵依然线性无关,则Ax=b必定有解。
如果有解,解的情况为
其中,除去特解,剩下的部分就是Aα=0时方程组的基础解系,特解为Aα=β的一个特解