矩阵的秩和线性方程组的解的关系

假如令β=k1*α1+k2*α2...kn*αn

其中αi=(xi1,xi2...xim)T

β=(y1,y2...ym)T

则A和\bar{A}分别为

如果r(A)=r(\bar{A})<n,有无穷解

r(A)!=r(\bar{A}),无解

r(A)=r(\bar{A})=n,唯一解

因此,如果r(A)=m,则行向量必定线性无关,加上b后的增广矩阵依然线性无关,则Ax=b必定有解。

如果有解,解的情况为

其中,除去特解,剩下的部分就是Aα=0时方程组的基础解系,特解为Aα=β的一个特解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值