原文链接http://www.bubuko.com/infodetail-525389.html
1、Kaggle简介
这是当前正在火热进行的有奖比赛,有冠军杯形状的是“Featured”,译为“号召”,召集数据科学高手去参赛。下面那个灰色的有试剂瓶形状的是“Research”,奖金少一点。这两个类别的比赛是有奖竞赛,难度自然不小,作为入门者,应该先做练习赛:
这是一个识别数字0~9的练习赛,“Competition Details“是这个比赛的描述,说明参赛者需要解决的问题。”Get the Data“是数据下载,参赛者用这些数据来训练自己的模型,得出结果,数据一般都是以csv格式给出:
2、竞赛项目解题全过程
(1)知识准备
(2)Digit Recognition解题过程
下面我将采用kNN算法来解决Kaggle上的这道Digit Recognition训练题。上面提到,我之前用kNN算法实现过,这里我将直接copy之前的算法的核心代码,核心代码是关于kNN算法的主体实现,我不再赘述,我把重点放在处理数据上。
以下工程基于Python、numpy
- 获取数据
- 从”Get the Data“下载以下三个csv文件:
- 分析train.csv数据
- train.csv是训练样本集,大小42001*785,第一行是文字描述,所以实际的样本数据大小是42000*785,其中第一列的每一个数字是它对应行的label,可以将第一列单独取出来,得到42000*1的向量trainLabel,剩下的就是42000*784的特征向量集trainData,所以从train.csv可以获取两个矩阵trainLabel、trainData。
-
下面给出代码,另外关于如何从csv文件中读取数据,参阅:csv模块的使用
-
def loadTrainData(): l=[] with open('train.csv') as file: lines=csv.reader(file) for line in lines: l.append(line) #42001*785 l.remove(l[0]) l=array(l) label=l[:,0] data=l[:,1:] return nomalizing(toInt(data)),toInt(label)
这里还有两个函数需要说明一下,toInt()函数,是将字符串转换为整数,因为从csv文件读取出来的,是字符串类型的,比如‘253’,而我们接下来运算需要的是整数类型的,因此要转换,int(‘253’)=253。toInt()函数如下:
-
def toInt(array): array=mat(array) m,n=shape(array) newArray=zeros((m,n)) for i in xrange(m): for j in xrange(n): newArray[i,j]=int(array[i,j]) return newArray
nomalizing()函数做的工作是归一化,因为train.csv里面提供的表示图像的数据是0~255的,为了简化运算,我们可以将其转化为二值图像,因此将所有非0的数字,即1~255都归一化为1。nomalizing()函数如下:
-
def nomalizing(array): m,n=shape(array) for i in xrange(m): for j in xrange(n): if array[i,j]!=0: array[i,j]=1 return array
-
分析test.csv数据
- test.csv里的数据大小是28001*784,第一行是文字描述,因此实际的测试数据样本是28000*784,与train.csv不同,没有label,28000*784即28000个测试样本,我们要做的工作就是为这28000个测试样本找出正确的label。所以从test.csv我们可以得到测试样本集testData,代码如下:
-
def loadTestData(): l=[] with open('test.csv') as file: lines=csv.reader(file) for line in lines: l.append(line) #28001*784 l.remove(l[0]) data=array(l) return nomalizing(toInt(data))
-
- 分析knn_benchmark.csv
- 前面已经提到,由于digit recognition是训练赛,所以这个文件是官方给出的参考结果,本来可以不理这个文件的,但是我下面为了对比自己的训练结果,所以也把knn_benchmark.csv这个文件读取出来,这个文件里的数据是28001*2,第一行是文字说明,可以去掉,第一列表示图片序号1~28000,第二列是图片对应的数字。从knn_benchmark.csv可以得到28000*1的测试结果矩阵testResult,代码:
-
def loadTestResult(): l=[] with open('knn_benchmark.csv') as file: lines=csv.reader(file) for line in lines: l.append(line) #28001*2 l.remove(l[0]) label=array(l) return toInt(label[:,1])
- 到这里,数据分析和处理已经完成,我们获得的矩阵有:trainData、trainLabel、testData、testResult
-
- 算法设计
-
def classify(inX, dataSet, labels, k): inX=mat(inX) dataSet=mat(dataSet) labels=mat(labels) dataSetSize = dataSet.shape[0] diffMat = tile(inX, (dataSetSize,1)) - dataSet sqDiffMat = array(diffMat)**2 sqDistances = sqDiffMat.sum(axis=1) distances = sqDistances**0.5 sortedDistIndicies = distances.argsort() classCount={} for i in range(k): voteIlabel = labels[0,sortedDistIndicies[i]] classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1 sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0]
-
关于这个函数,参考: kNN算法实现数字识别简单说明一下,inX就是输入的单个样本,是一个特征向量。dataSet是训练样本,对应上面的trainData,labels对应trainLabel,k是knn算法选定的k,一般选择0~20之间的数字。这个函数将返回inX的label,即图片inX对应的数字。对于测试集里28000个样本,调用28000次这个函数即可。
-
- 保存结果
代码: -
def saveResult(result): with open('result.csv','wb') as myFile: myWriter=csv.writer(myFile) for i in result: tmp=[] tmp.append(i) myWriter.writerow(tmp)
-
- 综合各函数
上面各个函数已经做完了所有需要做的工作,现在需要写一个函数将它们组合起来解决digit recognition这个题目。我们写一个handwritingClassTest函数,运行这个函数,就可以得到训练结果result.csv。
- 运行这个函数,可以得到result.csv文件:
-
def handwritingClassTest(): trainData,trainLabel=loadTrainData() testData=loadTestData() testLabel=loadTestResult() m,n=shape(testData) errorCount=0 resultList=[] for i in range(m): classifierResult = classify(testData[i], trainData, trainLabel, 5) resultList.append(classifierResult) print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, testLabel[0,i]) if (classifierResult != testLabel[0,i]): errorCount += 1.0 print "\nthe total number of errors is: %d" % errorCount print "\nthe total error rate is: %f" % (errorCount/float(m)) saveResult(resultList)
- 2 0 9 9 3 7 0 3.......就是每个图片对应的数字。与参考结果knn_benchmark.csv比较一下:
- 28000个样本中有1004个与kknn_benchmark.csv中的不一样。错误率为3.5%,这个效果并不好,原因是我并未将所有训练样本都拿来训练,因为太花时间,我只取一半的训练样本来训练,即上面的结果对应的代码是:
- 训练一半的样本,程序跑了将近70分钟(在个人PC上)。
-
- 提交结果
将result.csv整理成kknn_benchmark.csv那种格式,即加入第一行文字说明,加入第一列的图片序号,然后make a submission,结果准确率96.5%: