SR-CNN定位算法

 

这个算法适用于细胞核的定位。特点是需要的标注只要点细胞核的中心,不需要画框。并且精度较高。

一、训练

1.输入是patch,输出是对应的概率密度图mask

2.为什么不引入更深层的结构,如resnet?

3.最后几层是全连接层,作为回归层

4.激活函数,除了最后的回归层是sigmoid函数,前面的层都是relu

5.池化层,采用max-pooling。

二、测试

1个点被多个附近的patch所包含,将多个概率密度值平均即可。

绿圈是ground truth,黄色是定位点。可以看到效果很好。

 

转载于:https://www.cnblogs.com/mimandehuanxue/p/8479087.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值