基于CNN的SR论文分享

目录

一、SRCNN

二、FSRCNN

 三、EDSR

四、 RCAN


一、SRCNN

Learning a Deep Convolutional Network for Image Super-Resolution-ECCV2014

最早使用CNN方法端到端的SR方法,使用一个前处理,bicubic插值到目标分辨率,特征提取,特征映射和重构三部分组成,其中特征映射 使用的1x1的卷积,且只用1层,特征提取也是用1层,9x9的卷积核,重构也是1层,5x5的卷积核,相当于是三层卷积网络,是一个很轻量 级网络,训练loss使用l2 loss。

在set5和set14的测试集上的客观指标,比其他传统算法都要高,而且也不怎么耗时,主要是网络比较小,不过应该比较占用内存。 这篇论文很大的价值是开启了基于CNN的SR方法,之后很多论文都使用CNN的方法。

二、FSRCNN

Accelerating the Super-Resolution Convolutional Neural Network-ECCV2016

和SRCNN是相同作者: 1、网络输入是低分辨率图像,没有做bicubic插值,减少计算量,改成一个通道进网络,5x5的核,输出d层 2、非线性mapping分成三部分,shrinking(1x1的核,d变成s), mapping(m个3x3), expanding(1x1的核,s变成d),沙漏模型,两端厚,中间薄,不是Unet那种,可以进一步减少计算量 3、用反卷积实现上采样,使用9x9的核,d变成1,训练不同尺度的SR时,可以只训练反卷积部分,快速训练 4、用PReLU替换ReLU 整体上,和SRCNN相比,卷积核都变成更小了,但网络更深了。

表示网络大小

 在set5上的效果对比,比原来的SRCNN能快41X,效果提升0.2个dB 不同参数下,效果对比,table2

 的效果

 的效果

 三、EDSR

Enhanced Deep Residual Networks for Single Image Super-Resolution-CVPR2017

EDSR/MDSR,NTIRE2017 Super-Resolution 挑战冠军 网络比较简单,就是使用很多个B个ResBlock,ResBlock中去掉了BN和最后的ReLU,每个卷积有F个特征层,采用shuffle进行上采样。 baseline中采用 B=16,F=64,不使用residual scaling(就是把resBlock前的结果加到经过所有resBlock后的结果上) EDSR中采用了residual scaling with factor 0.1,B=32,F=256 MDSR是同时可以进行x2,x3,x4三种缩放比例的网络,网络中间部分共享,前后两端分别有不同的,前端的resBlock采用5x5的卷积,B=80,F=64,不使用residual scaling。训练这个网络时,每个batch里,随机选一种尺度进行训练,其他的尺度就不训练,对应的模块参数就不变,这样中间部分是一直更新的。

loss采用L1,而不用L2,原因是更加好收敛  采用self-ensemble strategy,就是对输入图像进行4个方向旋转,然后还有翻转,这样就能构建8种情况,就是8个LR图,都经过网络,得到8个输出,然后把这个8个HR图取平均,作为最后的结果,EDSR+和MDSR+就是使用了这种策略 这个结果基本上是很好了。

四、 RCAN

Image Super-Resolution Using Very Deep Residual Channel Attention Networks-2018

使用了很深的网络,为了能够收敛,使用了Residual in Residual,同时加入了long skip connection 每个RG由多个RCAB模块组成,RCAB使用残差,同时加入了Channel Attention机制 使用了10RG,每个RG中有20个RCAB,主要是3x3卷积,通道数一般用64

 

比EDSR客观数据还要高些

        目前分享这几篇,之后继续总结,这些都是把bicubic下采样作为LR图,基本上都是使用DIV2K数据集进行训练,也可以看到随着网络的加深,效果会有一定的提升。loss上,目前普遍只使用L1或者L2,并没有使用VGG loss或者GAN loss,具有一定的可比性。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值