利用python预测交通拥堵_Python pyecharts 绘制的交通拥堵情况地图

本文介绍了如何使用Python爬取并利用某度智慧交通数据,通过pyecharts库绘制实时的交通拥堵情况地图,同时展示了如何搭建网站来展示这些数据。
摘要由CSDN通过智能技术生成

本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理。

以下文章来源于Python干货铺子 ,作者:不正经的kimol君

ce403d4387752df6812e9e89ba2cae6a.png

前言

就在今天,我感受到了来自堵车的深深恶意。没有错!我今天被堵在路上近乎3个小时,美好的约会就这样化为泡影了。

e21b84d1c83cc70819986948b3dafd0d.png

我倒还真想看看这路到底能有多堵。于是,我爬取了各城市的拥堵数据,并将它们可视化:

79f2c657c15710275074b69ed9f29f59.png

特别说明:由于数据具有实时性,画图时已经过了高峰期,于是图上一片绿油油也并不奇怪。有感兴趣的客官,您接着往下看,待我给您慢慢分解。(ps.涉及到爬虫、pyecharts、flask等)

一、爬取拥堵指数

某度智慧交通提供了各个城市的拥堵指数的数据,我们只需要通过几行代码便可轻松抓取:<

交通拥堵预测-基于python实现道路一段时间内的车辆流量预测+项目说明 【项目介绍】 该资源内项目代码都是经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶, 或者实际项目借鉴参考! 当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。如果基础还行,也可在此代码基础上进行修改,以实现其他功能。 题目:交通拥堵预测 *背景* > 交通拥挤是交通运输中最严重的的问题之一。尽可能早地预测道路拥堵程度是有价值的,这样司机和行人就可以通过预测来规避拥堵。 *数据描述* > The GCM (Gary-Chicago-Milwaukie) Corridor包含16座城镇之间的所有主干道。在所有路口共放置855个传感器,来收集一天中的交通数据流,其格式为每5分钟记录一个拥堵状态,一天有288条数据。每个传感器都实时收集交通状态,并通过无线通讯将路口位置和拥堵信息传输到中央服务器。每一条流数据包含下列属性(date, time, direction, type, linkID, length, travelTime, volumn, speed, occupancy, and congestionLevel)。拥堵状态共有四种,non, light, medium, and heavy(通畅、轻微拥堵、中度拥堵、重度拥堵)。以下是一条数据流的样例: > > > **707,0000,NORTH_BOUND,FREEWAY,WI-MNT_XML_V001-21012,1268,40,218,31.292915,2.4,NON_CONGESTION** *问题描述* ​ 我们下载了5天的交通数据,其中4天数据给大家作为模型训练。请基于训练集建立模型来预测未来的交通拥堵状态。 ​ 对数据进行预处理操作是必要的。可以使用各种数据挖掘算法和机器学习方法建立预测模型。 *评估* **提交模型预测** 将第5天的数据作为测试集进行模型评估。助教将提供几个时间区段内所有传感器收集的实际的交通拥堵状态。请预测接下来30分钟内所有传感器的拥堵状态。 请提交实验报告来阐述你的实验方案、方法和性能分析。 为了便于测试,拥堵预测的输出格式如下: WI-MNT_XML_V001-21012(传感器ID):0,1,2,3,3,2(0 表示通畅,1表示轻微拥堵、2表示中度拥堵、3表示重度拥堵,连续6个数字代表30分钟内的拥堵状态) 训练集、测试集网盘地址
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值