构建训练集:道路拥堵情况预测

本文探讨了如何构建训练集以预测道路拥堵情况。通过考虑道路自身的拥堵历史及相邻道路的状态,构建了一个使用最近三分钟数据预测下一分钟拥堵情况的模型。训练集基于过去5小时每分钟的道路拥堵状况,采用逻辑回归模型进行训练,并强调增加分类数能提升模型抗干扰能力。
摘要由CSDN通过智能技术生成
  1. 道路拥堵情况预测

构建训练集:

每条道路的拥堵情况不仅和当前道路前一个时间点拥堵情况有关系,还和与这条道路临近的其他道路的拥堵情况有关。甚至还和昨天当前时间点当前道路是否拥堵有关联。我们可以根据这个规律,构建训练集,预测一条道路拥堵情况。

假设现在要训练一个模型:使用某条道路最近三分钟拥堵的情况,预测该条道路下一分钟的拥堵情况。如何构建训练集?

构建的训练集有什么样的特点,依靠训练集训练的模型就具备什么样的功能。

步骤:

  1. 计算道路每分钟经过的车辆数和速度总和,可以得到道路实时拥堵情况
  2. 预测道路的拥堵情况受当前道路附近道路拥堵的情况,受这几个道路过去几分钟道路拥堵的情况。预测道路拥堵情况可以根据附近每条道路和当前道路前3分钟道路拥堵的情况来预测。用附近每条道路和当前道路前3分钟道路的拥堵情况来当做维度。统计这些道路过去5个小时内每分钟的前3分钟拥堵情况构建数据集。
  3. 训练逻辑回归模型
  4. 保存模型
  5. 使用模型预测道路的拥堵情况

注意:提高模型的分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值